BS Range

Benzlers develops, manufactures and supplies equipment for power transmission and linear motion to the world market.

Benzlers

Benzlers is a leading manufacturer and supplier of power transmission equipment around the world. For over 50 years, our customers have gained the benefit of our experience and our products to satisfy their power transmission demands.

Quality products with high reliability and long durability are something that we feel should go without saying. We pride ourselves on short delivery times, high delivery reliability and the best possible service to our customers.

We have a well established market and service organisation with subsidiaries and agents in Europe and all over the world. This is important for internationally active companies who are searching for the right power transmission supplier.

This catalogue will help you select suitable products for your applications. Naturally, you are always welcome to contact our specialists for advice and solutions. We can also offer you CAD diskettes as support in your own work in CAD systems.

Welcome to Benzlers !

Contents

Technical information 5
Selection of worm gears and worm geared motors 6
Order procedure 10
Mounting positions. 11
WORM GEARED MOTORS
Power ratings - Output speeds 12
Applications 25
Dimensions 26
WORM GEARS
Power ratings - Output speeds 40
Dimensions 48
Maximum input speed 57
Gear with Environmental classification 58
Combinationexamples 60
CAD 61
Mounting and maintenance instructions 62
Questionnaire 63

The programme

BS 40-71 Single input shaft	BS 40-71 Hollow shaft	BS 88-112 Single input shaft
BS 40-71 Output shaft	BS 40-71	BS 88-1 12 Hollow shaft
	BS 88-112	
BS 40-71 Output flange	BS 40-71 Bolt the gear to a wall or foundation without feet or flange	Output flange
BS 40-71	BS 40-71 Double worm gears	BS 88-112 Double worm gears

Technical information

Benzler worm gears BS 35-71 have a symmetrical gearhousing manufactured in aluminium. BS 88 and 112 have a gearhousing of cast-iron.
The worm wheel is made of centrifugal cast tinbronze and the worm screw is case-hardened and ground.
All motor connections are according to IEC -standard and for BS 40-112 with elastic coupling. This means the following advantages:

- The worm screw is mounted with two separate bearings and are not connected with the motor bearings. This means longer lifetime and a smoother drive..
- Soft start and stop with elastic coupling for size 40-112.
- No oil leakage in to the motor.
- Possibility to change motor without dismounting the gear.
- Any type of motor with IEC.flange can be used..

The worm geared motor is available for mounting on a base, flange or torque arm and can be installed in any position.
The gear can be combined with Benzlers' remaining range of helical and worm gears to provide very low output speeds. All data given in this catalogue applies to $A B B$ standard motors and Benzlers brake motors.

Motorflanges

The motorflanges up to IEC-size 112 are made of aluminium and are available in B5 and B14, larger motorflanges are made of cast-iron and available in B5. A finished bore shaft coupling is always delivered together with the motorflange.

Feet

The feet can be mounted without modification.

Output shaft

Single or double output shaft can be mounted into the hollow shaft. The output shafts are locked into position with keys and retaining rings. BS $88-112$ has as standard execution, a single output shaft or a hollow shaft.

Output flange

An output flange can easily be mounted on to the gear. The BS 40.71 gear casing can also be mounted onto a wall or foundation and bolted through the 4 bolt holes in the gear casing.

Torque arm bracket

The hollow shaft gearboxes can be supplied with torque arm bracket and torque arm.

Fan

BS 88/112 have fan as an option.

Painting

BS35-71 is normally delivered without painting. BS $40-71$ can be delivered according to environmental classification M2-M3, see page 58-59.
BS88-112 is normally delivered with standardpaint, which is an alkyd paint in Benzler blue colour (RAL 5015).

Power and torque ratings for gears on page 40-47 apply to service factor 1.0. Service factor for geared motors can be found after the output speeds. Service factor 1.0 is valid for continous operation 8 hours/day without shocks and with 10-200 starts per hour. The inertia of the driven machine is less than 20% of the electric motor. Occasional shock loads may not exceed 1.8 times the gear rating at service factor 1.0.

Determination of sizes

1. Determine the demand power or torque, P_{e} or $T_{2 b}$ ratio (i) or output speed $\left(\mathrm{n}_{2}\right)$.
2. Based on type of load/driven machine, operating hours/day and number of starts/hour, select service factor f_{b} (page 6-7).
3. Calculate $\mathrm{T}_{2} \geq \mathrm{T}_{2 b} \times \mathrm{f}_{\mathrm{b}}$.
4. Choose gear on page 40-47 according to following: $T_{2} \geq T_{2 b} \times f_{b}$ at required ratio (i) or speed $\left\langle n_{2}\right\rangle$. Note the efficiency.
For example BS40 ratio 6,67:1, code A
$\eta=86 \%$ at $\mathrm{n} \boldsymbol{\eta}=1430 \mathrm{rpm}$.
5. Calculate $P_{1}=P_{e} \times f_{b} \times \frac{1}{\eta}$ Choose a size larger motor $P_{m} \geq P_{1}$
For example $\mathrm{P}_{1} \geq 0,42 \mathrm{~kW}$ choose $0,55 \mathrm{~kW}$.
6. Choose a worm gear motor on pages 12-24.

For example BS40A with a motor size 80A4.
7. Check that occasional shock loads do not exceed 1.8 times the gear rating at service factor 1.0.
$T_{2 \text { max }} \geq T_{2} \times 1,8$
8. Check that the thrust and overhung loads are not exceeded.
9. Check that maximum input speeds and thermal ratings are not exceeded.
10. For conditions other than above described, for instance extreme environments, high inertia systems or other, please contact your nearest Benzler office.

Formulas:

Load classification	Description Moment of inertio	Example
1	$J_{e}, r e d \leq 0.2 \times J_{m}$ Machines with uniform load and no shocks	Uniform loaded conveyors and elevators. Centrifugal pumps and fans. Agitators and mixers for liquids and semiliquids without solid particles.
1 a	Je, red s Jm Machines with small shocks and small variations in load	Larger conveyors. Reciprocating pumps with 3 or more cylinders. Agitators and mixers for media with high viscosity and/or solid particles.
11	$J_{\mathrm{e}}, \mathrm{red} \leq 3 \times \mathrm{J}_{\mathrm{m}}$ Machines with moderate shocks and variable load	Larger conveyors. Reciprocating pumps with 3 or more cylinders. Agitators and mixers for media with high viscosity and/or solid particles
III	$\mathrm{J}_{\mathrm{e}, \mathrm{red}} \leq 10 \times \mathrm{J}_{\mathrm{m}}$ Machines with very heavy shocks and large masses to be accelerated	Heavy agitators and mixers. Reciprocating pumps with 1 or 2 cylinders. Crushers, mills and presses. Vibrators and shakers

Service factor \mathbf{f}_{b}

Daily operations in hours	4 hours			8 hours			16 hours			24 hours		
Starts per hour	<10	$10-200$	>200	<10	10.200	>200	<10	$10-200$	>200	<10	10.200	>200
Load classification												
1	0.8	0.9	1.0	0.9	1.0	1.1	1.1	1.2	1.3	1.3	1.4	1.5
$1 a$	1.1	1.2	1.3	1.1	1.3	1.5	1.3	1.5	1.6	1.4	1.6	1.8
II	1.3	1.4	1.6	1.3	1.6	1.8	1.4	1.7	1.9	1.5	1.8	2.0
III	1.5	1.6	1.8	1.6	1.8	2.0	1.7	1.9	2.1	1.8	2.0	2.2

Ambient temperature factor $\mathbf{f}_{\boldsymbol{t}}$

For other ambient temperatures then $20^{\circ} \mathrm{C}$, always multiply the thermal rating with the following factors.

${ }^{\circ} \mathrm{C}$ Celsius	-40	-30	-20	-10	$+/ .0$	10	20	30	40	50
ff	1.80	1.67	1.53	1.40	1.27	1.13	1.00	0.87	0.73	0.60

Fan factor \mathbf{f}_{f}

If the gearbox has no fan and the motor is not directly flanged to the gearbox, multiply the thermal rating with the following factors.

Input speed $\mathrm{n} 1(\mathrm{rpm})$	10	100	300	750	1000	1500	3000
ff_{f}	1	0.95	0.74	0.63	0.65	0.69	0.77

Control points

The forces allowed on the gear shafts are determined by bearing life and strength on gear shafts and housing. Radial forces at no thrust loads. In the power ratings page $12-24$ max. allowed radial force on output shaft is given for each output speed. The value is only valid if the force is applied at the centre of the output shaft.If the force is applied at another position the allowed radial force is given by the following:

Radial forces

Bearing life: $\quad F_{r, x}=\underset{(f+x)}{a} F_{r 2}$
Strength on shaft $F_{r, x}=\frac{c}{x} . F_{r 2}$
$\begin{aligned} & \text { Strength on } \\ & \text { gear housing: }\end{aligned} F_{r, x}=\frac{d}{(g+x)} F_{r 2 \max }$

$F_{r, x} \quad=$ Max. radial force (N)
$\mathrm{F}_{\mathrm{r} 2}=$ Radial force acc to power ratings (N).
$\mathrm{F}_{\text {r2max }}=$ Upper limit, for radial force. Can not be exceeded (N)
$\mathrm{a}, \mathrm{d}, \mathrm{f}, \mathrm{g}=$ Internal measures (mm)
$x \quad=$ Distance to radial force (mm)
c $\quad=$ Half shaft length (mm)

Type/Size	a	c	d	f	g	$\mathrm{F}_{\mathrm{r} 2 \mathrm{max}}(\mathrm{N})$
BS 35	77.5	18	88.0	59.5	70.0	2000
40	90.5	18	101.5	72.5	83.5	2000
50	96.5	21	110.0	75.5	89.0	2700
63	107.0	29	122.0	78.0	93.0	4000
71	127.5	29	142.5	98.5	113.5	5000
88	152.5	41	181.0	111.5	140.0	10000
112	175.0	41	210.5	134.0	169.5	15000

Overhung load

If a sprocket, gear wheel or pulley is mounted on a shaft, a load check must be made. The overhung load in middle of the shaft may not exceed values shown in tables below. For calculation of minimum permissible diameter the following formula should be used.
$D_{\text {min }}=\frac{2000 \times T_{2 b} \times f_{e} \times f_{b}}{F_{r 2}} \mathrm{~mm}$
$\mathrm{T}_{2 \mathrm{~b}}=$ Torque required (Nm)
$T_{2 b}=\frac{P_{e} \times 9550}{n_{2}} \mathrm{Nm}$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{e}} & =\text { Power } \mathrm{kW} \\
\mathrm{n}_{2} & =\text { Output speed (rpm) } \\
\mathrm{F}_{\mathrm{r} 2} & =\text { Permissible overhung load (N) } \\
\mathrm{f}_{\mathrm{b}} & =\text { Service factor (tables page } 7 \text {) } \\
\mathrm{f}_{\mathrm{e}} & =1.10 \text { for sprockets } \\
& =1.30 \text { for gearwheels } \\
& =1.50 \text { for pulleys } \\
\mathrm{D}_{\min } & =\text { Minimum permissible diameter (mm) }
\end{aligned}
$$

Max overhung load in the middle of input shaft (N)

Gear	Ratio													
Frl	A	B	C	D	E	F	Fx	G	H	1	J	K	L	M
BS 40	180	135	100	95	80	70	-	50	45	45	40	30	-	-
50	215	190	155	115	100	80	70	65	55	55	40	.	-	.
63	385	305	255	210	165	155	125	115	100	100	75	45	-	-
71	400	350	285	240	180	150	.	115	100	100	60	45	-	-
88	925	635	470	405	335	305	-	235	200	200	190	145	100	65
112	1375	930	740	580	505	425	-	340	295	295	255	160	125	105

Max thrust load on output shaft (N)

Size		Ratio													
		A	B	C	D	E	F	$F x$	G	H	1	J	K	L	M
BS	35	1500	1500	1500	1500	1500	1500		1500						
	40	2000	2000	2000	2000	2000	2000	-	2000	2000	2000	2000	2000	-	-
	50	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500	-	-	-
	63	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	-	-
	71	4500	4500	4500	4500	4500	4500	.	4500	4500	4500	4500	4500		-
	88	7800	10000	10000	10000	10000	10000	-	10000	10000		10000	10000	10000	10000
	112	10400	14700	15000	15000	15000	15000	-	15000	15000		15000	15000	15000	15000

Reversing

Dynamic self locking means that a force applied on the output shaft of the gear can not continue to drive the gear when the motor has been stopped.
Dynamic self locking is only possible at very high ratios and low output speeds. None of the worm gears produced by BENZLERS is dynamic totally self locking.
Static self locking means that a force applied on the output shaft of the gear can not start a movement.
When driving loads with high inertia care must be taken to achieve a braking time long enough to prevent overload on the gear.
When a worm gear is used in an application with short braking time a worm gear that is "dynamically reversible" is normally the best selection.
Information regarding lead angle for BENZLERS worm gears are given on the following page.

Reversing as a function of the lead angle

y	
$\geq 25^{\circ}$	Total reversing
$12^{\circ}-25^{\circ}$	Statically reversible
$8^{\circ}-12^{\circ}$	Variable static self locking Quick return in case of vibrations Dynamically reversible
$5^{\circ}-8^{\circ}$	Statically self locking Return in case of vibrations Scant dynamic reversing
$3^{\circ}-5^{\circ}$	Statically self locking Slow movement return in case of vibrations. Low dynamic reversing
$1^{\circ}-3^{\circ}$	Statically self locking No return Low dynamic reversing

$z=$ Starts of worm shaft
$\mathrm{m}=$ Module

	i	γ	z	m	η_{s}	η
$\begin{aligned} & \text { B S } \\ & 35 \end{aligned}$	10 A	15.45	3	1.75	60	79
	15 B	10.45	2	1.75	51	74
	20 C	7.13	2	1.25	43	64
	25 D	5.71	1	2.0	37	60
	30 E	5.26	1	1.75	36	60
	40 F	3.58	1	1.25	27	48
	50 G	2.86	1	1.0	23	42
$\begin{aligned} & \text { B S } \\ & 40 \end{aligned}$	6.67 A	15.52	3	2.5	60	86
	10 B	16.70	3	2	62	85
	15 C	11.31	2	2	53	79
	20 D	8.53	1	3	47	75
	24 E	7.13	1	2.5	43	71
	30 F	5.71	1	2	37	67
	40 G	4.02	1	1.45	30	59
	48 H	3.58	1	1.25	27	56
	601	2.86	1	1	23	49
	70 J	3.03	1	0.9	24	44
	84 K	2.53	1	0.75	21	36
$\begin{aligned} & \text { BS } \\ & 50 \end{aligned}$	8 A	17.82	3	3	63	88
	10.5 B	15.07	2	3.5	60	87
	14 C	12.19	2	2.7	55	84
	21 D	7.67	1	3.5	44	77
	24 E	7.07	1	3	39	74
	32 F	5.71	1	2.4	37	71
	37 FX	4.40	,	2	32	66
	42 G	4.29	1	1.8	31	65
	54 H	334	1	1.4	26	59
	641	2.99	1	1.2	24	55
	80.	2.86	1	1	23	49
$\begin{aligned} & \text { B } 5 \\ & 63 \end{aligned}$	7.75 A	18.43	4	3	64	90
	11 B	17.82	3	3	63	88
	14 C	15.07	2	3.5	60	87
	18 D	10.20	2	2.7	51	83
	24.5 E	993	2	2.1	50	81
	29 F	7.67	1	35	44	77
	37 FX	447	1	2.5	32	70
	43 G	571	1	2.4	37	71
	51 H	4.76	1	2	33	67
	571	4.29	1	1.8	31	65
	73 J	3.34	1	1.4	26	59
	104 K	2.60	1	1	22	46

$\eta_{\mathrm{s}}=$ Starting efficiency
$\eta=$ Running efficiency $\mathrm{nl}=1430 \mathrm{rpm}$

	i	γ	z	m	η_{s}	η
$\begin{aligned} & \text { B S } \\ & 71 \end{aligned}$	7.5 A	18.29	4	3.5	64	92
	9.33 B	19.98	3	4	65	91
	12 C	14.04	3	3	58	88
	16D	12.34	2	3.5	55	87
	21 E	10.20	2	2.7	51	84
	28 F	6.91	1	4	42	79
	37 G	6.12	1	3	39	76
	48 H	4.73	1	2.4	33	71
	631	3.55	1	1.8	27	65
	82 J	2.86	1	1.4	23	58
	100 K	2.99	1	1.2	24	54
$\begin{aligned} & \text { B S } \\ & 88 \end{aligned}$	7.25 A	21.80	4	4.5	67	94
	11.75 B	18.43	4	3	64	91
	15.67 C	14.04	3	3	58	89
	19.50 D	9.93	2	3.5	50	87
	23.50 E	9.46	2	3	49	85
	29 F	5.71	1	4.5	38	80
	39 G	5.00	1	3.5	34	77
	47 H	4.76	1	3	33	75
	58 J	4.47	1	2.5	32	72
	71 K	3.37	1	2	26	67
	82 L	3.55	1	1.8	27	66
	106 M	2.86	1	1.4	23	57
$\begin{gathered} \text { B S } \\ 112 \end{gathered}$	7 A	22.48	4	6	68	94
	11.5 B	20.85	4	4	66	93
	15.3 C	15.95	3	4	61	91
	19.5 D	11.31	2	4.5	54	88
	23 E	10.78	2	4	52	88
	28 F	5.91	1	6	39	83
	39 G	5.71	1	4.5	38	80
	46 H	5.44	1	4	36	79
	63 J	4.76	1	3	33	75
	76 K	4.21	1	2.5	31	71
	95 L	3.37	1	2	26	66
	108 M	295	1	1.75	24	61

Efficiency

The efficiency of the gear has to be considered when a worm gear or a worm geared motor is chosen. For intermittent duties it is necessary to increase the motor power to be able to compensate for the low efficiency during start.
Also consider that the highest efficiency is reached after
run-in period and under continuous duty.
All values given in the catalogue are only valid for a gear after running-in period under continuous duty with service factor 1.
If the gear is driven from the output shaft the back driving efficiency is calculated as follows:

$$
\eta=2-\frac{1}{\eta}
$$

Maximum input speed

		Size						
$\mathrm{n} 1, \max$	35	40	50	63	71	88	$112 \mathrm{i}<60: 1$	$112 \mathrm{i}>60: 1$
rpm	4500	6000	5500	5000	4500	4000	3000	3500

Questionaire

To specify a drive precisely certain data are essential. The most important questions are listed in the table below. If you do not hove the required data available in this form, we advice you to use a technical handbook or other suitable documentation. Should you have any question, please do not hesitate to contact us, Benzlers specialists will be pleased to assist you.

Load designation

Unit type and mounting position (see page 11)

Gears and geared motors are described by a code consisting of 10 positions. Positions that aren't used are left empty. Additional information is written clearly.

Example of such information is:

Output speed, Motor power
Connecting voltage for motor and brake (if used)
Type of motor at specific request
All nonstandard executions that are not described in this catalogue.

Additional information:

1 Gear type

BS (Worm gear and worm geared motor)
2 Gear size
Standard sizes $35,40,50,63,71,88,112$,
50/40, 63/40, 71/40, 88/50, 112/63
Other combinations and sizes can be achieved.
Check with Benzlers.

3 Ratio code

A, B, C....FA, FB, FC 2 letters for double wormgears).

4 Mounting position

See picture *For execution - code 2 and 3 state flange size, for example $M=115$, see page 55 .

5 Gear Accessories

$\mathrm{VM}=$ distance ring for different position of terminal box $\mathrm{EB}=$ brake on gear
KEB = coupling/brake unit (specify type and voltage)
$\mathrm{F}=$ fan on gear (only BS 88 and BS 112)
DP = double input shaft

6 Input design

2 = free high speed shaft (no motor or flange for motor)
$3=$ prepared for motor (specify flange and shaft diametres or IEC-standard size)
$4=$ with motor

7 Motor

Acc. to IEC (71A, 71B)

8 Accessories for the motor

B = Brake
TB = Thermostat protection
Th = Thermistor protection
FS = Fitted with forced cooling
TG = Tachogenerator
PG = Encoder

9 Terminal box position

Positions acc picture

10 Motorflange

B14 = Small flange
B5 = Large flange

Motor flange B5

Position of terminal box

Motor sizes

	63	71	80	90	100	112	132	160	180
Gear									
$B S 40$	45^{*}	45^{*}	45^{*}	45^{*}					
50		0	0	0					
63		0	0	0					
71			$45+$	$45+$	$45+$	$45+$			
88			45	45	45	45	90		
$112(i<60)$					45	45	90	45	
$112(i>60)$				45	45	45	90		

BS35 is not available with B5.flange.

Mounting positions

Position of terminal box

Standard position 0

Standard position 45

Motor flange B14

Position of terminal box
Motor sizes

	63	71	80	90	100	112	132	160	180
Gear									
BS 35	45	45							
40	45^{*}	45^{*}	45^{*}	45^{*}					
50		45^{*}	45^{*}	45^{*}					
63		45^{*}	45^{*}	45^{*}	45				
71			$0+$	$0+$	$0+$	$0+$			
88			0	0	0	0			
112				0	0	0			

* $=$ Can be changed to 0 with distance ring, VM
$+=$ Distance ring to be mounted on gear

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Output speed n_{2} rpm \& Ratio
i \& Service factor $f_{b p}$ \& Output torque T2 Nm \& Permissible overhung load Fr2 kN \& Size \& Weight

kg \& Dim. page

\hline 0.69 \& 1960.00 FJ \& 0.76 \& 524 \& 5.0 \& BS 71/40 63A.4 \& 19 \& 36.39

\hline 0.81 \& 1680.00 Fl \& 0.86 \& 463 \& 5.0 \& \& \&

\hline 1.01 \& 1344.00 FH \& 0.99 \& 403 \& 5.0 \& \& \&

\hline 1.21 \& 1120.00 FG \& 1.13 \& 354 \& 5.0 \& \& \&

\hline 1.62 \& 840.00 FF \& 1.34 \& 299 \& 5.0 \& \& \&

\hline 2.02 \& 672.00 FE \& 1.57 \& 255 \& 5.0 \& \& \&

\hline 2.43 \& 560.00 FD \& 1.77 \& 226 \& 5.0 \& \& \&

\hline 3.24 \& 420.00 FC \& 2.20 \& 182 \& 5.0 \& \& \&

\hline 4.86 \& 280.00 FB \& 3.00 \& 133 \& 5.0 \& \& \&

\hline 2.34 \& 580.00 FD \& 0.76 \& 234 \& 4.0 \& BS 63/40 63A-4 \& 16 \& 36-39

\hline 3.13 \& 435.00 FC \& 0.96 \& 189 \& 4.0 \& \& \&

\hline 4.69 \& 290.00 FB \& 1.33 \& 138 \& 4.0 \& \& \&

\hline 7.03 \& 193.43 FA \& 1.96 \& 95 \& 4.0 \& \& \&

\hline 2.83 \& 480.00 ED \& 1.30 \& 113 \& 2.7 \& BS 50/40 63A-4 \& 14 \& 36.39

\hline 3.78 \& 360.00 EC \& 0.99 \& 146 \& 2.7 \& \& \&

\hline 5.67 \& 240.00 EB \& 1.33 \& 108 \& 2.7 \& \& \&

\hline 8.50 \& 160.00 EA \& 1.93 \& 75 \& 2.7 \& \& \&

\hline 6.44 \& 104.00 K \& 1.47 \& 73 \& 4.0 \& BS $6371 \mathrm{~B}-8$ \& 15 \& 28-35

\hline 9.18 \& 73.00 J \& 3.10 \& 58 \& 4.0 \& \& \&

\hline 11.75 \& 57.001 \& 3.91 \& 49 \& 4.0 \& \& \&

\hline 8.94 \& 104.00 K \& 2.09 \& 50 \& 4.0 \& BS 6371.6 \& 13 \& 28-35

\hline 8.38 \& 80.00 J \& 1.24 \& 62 \& 2.7 \& BS $5071 \mathrm{~B} \cdot 8$ \& 13 \& 28-35

\hline 10.47 \& 64.001 \& 1.99 \& 51 \& 2.7 \& \& \&

\hline 11.63 \& 80.00 J \& 1.94 \& 39 \& 2.7 \& BS 5071.6 \& 11 \& 28.35

\hline 14.53 \& 64.00 I \& 3.03 \& 33 \& 2.7 \& \& \&

\hline 17.22 \& 54.00 H \& 3.73 \& 29 \& 2.7 \& \& \&

\hline 7.98 \& 84.00 K \& 0.75 \& 48 \& 2.0 \& BS $4071 \mathrm{~B}-8$ \& 11 \& 28.35

\hline 9.57 \& 70.00 J \& 0.87 \& 54 \& 2.0 \& \& \&

\hline 11.17 \& 60.00 । \& 1.20 \& 46 \& 2.0 \& \& \&

\hline 11.07 \& 84.00 K \& 0.83 \& 42 \& 2.0 \& BS 4071.6 \& 9 \& 28.35

\hline 13.29 \& 70.00 J \& 1.22 \& 38 \& 2.0 \& \& \&

\hline 15.50 \& 60.00 1 \& 1.66 \& 32 \& 2.0 \& \& \&

\hline 16.19 \& 84.00 K \& 1.60 \& 21 \& 2.0 \& BS 40 63A-4 \& 9 \& 28-35

\hline 19.43 \& 70.00 J \& 2.36 \& 19 \& 2.0 \& \& \&

\hline 22.67 \& 60.00 I \& 3.21 \& 16 \& 2.0 \& \& \&

\hline 28.33 \& 48.00 H \& 4.15 \& 14 \& 2.0 \& \& \&

\hline 34.00 \& 40.00 G \& 4.84 \& 12 \& 2.0 \& \& \&

\hline 15.33 \& 30.00 F \& 5.97 \& 10 \& 2.0 \& \& \&

\hline 56.67 \& 24.00 E \& 7.07 \& 8 \& 2.0 \& \& \&

\hline 68.00 \& 20.00 D \& 8.18 \& 7 \& 2.0 \& \& \&

\hline 90.67 \& 15.00 C \& 10.53 \& 6 \& 2.0 \& \& \&

\hline 136.00 \& 10.00 B \& 14.84 \& 4 \& 2.0 \& \& \&

\hline 203.90 \& 6.67 A \& 19.52 \& 3 \& 1.7 \& \& \&

\hline 13.00 \& 50.00 G \& . 90 \& 39 \& 2.0 \& BS 35 71B-8 \& 8.5 \& 26-27

\hline 16.00 \& 40.00 F \& 1.04 \& 34 \& 2.0 \& \& \&

\hline 22.00 \& 30.00 E \& 1.26 \& 29 \& 2.0 \& \& \&

\hline 26.00 \& 25.00 D \& 1.43 \& 25 \& 2.0 \& \& \&

\hline 33.00 \& 20.00 C \& 1.62 \& 21 \& 2.0 \& \& \&

\hline 44.00 \& 15.00 B \& 2.06 \& 17 \& 2.0 \& \& \&

\hline 67.00 \& 10.00 A \& 2.94 \& 12 \& 2.0 \& \& \&

\hline 18.00 \& \& 1.13 \& 28 \& 2.0 \& BS 3571.6 \& 7.0 \& 26.27

\hline 23.00 \& 40.00 F \& 1.3 \& 24 \& 2.0 \& \& \&

\hline 31.00 \& 30.00 E \& 1.54 \& 20 \& 2.0 \& \& \&

\hline 37.00 \& 25.00 D \& 1.8 \& 17 \& 2.0 \& \& \&

\hline 46.00 \& 20.00 C \& 2.13 \& 15 \& 2.0 \& \& \&

\hline 62.00 \& 15.00 B \& 2.67 \& 12 \& 2.0 \& \& \&

\hline 93.00 \& 10.00 A \& 3.78 \& 8 \& 1.9 \& \& \&

\hline 27.00 \& 50.00 G \& 1.93 \& 14 \& 2.0 \& BS 35 63A-4 \& 6.0 \& 26-27

\hline 34.00 \& 40.00 F \& 2.23 \& 12 \& 2.0 \& \& \&

\hline
\end{tabular}

Output speed n_{2} rpm	Ratio	Service factor $f_{b p}$	Output torque T_{2} Nm	Permissible overhung load Fr2 kN	Size	Weight kg	Dim. page
$\begin{array}{r} 45.00 \\ 54.00 \\ 68.00 \\ 90.00 \\ 136.00 \end{array}$	$\begin{aligned} & 30.00 \mathrm{E} \\ & 25.00 \mathrm{D} \\ & 20.00 \mathrm{C} \\ & 15.00 \\ & \mathrm{~B} \\ & 10.00 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.70 \\ & 3.16 \\ & 3.8 \\ & 4.78 \\ & 6.84 \end{aligned}$	$\begin{array}{r} 10 \\ 8 \\ 7 \\ 5 \\ 4 \end{array}$	$\begin{aligned} & 2.0 \\ & 2.0 \\ & 2.0 \\ & 2.0 \\ & 1.7 \end{aligned}$	BS 35 63A-4	6.0	26-27

Worm geared motors
0.18 kW

Output speed n_{2} rpm	Ratio i	Service factor $f_{b p}$	Output torque T_{2} Nm	Permissible overhung load Fr_{2} kN	Size	Weight kg	Dim. page
1.22	1120.00 FG	0.76	529	5.0	BS 71/40 638-4	19	36.39
1.63	840.00 fF	0.89	448	5.0			
2.04	672.00 FE	1.04	383	5.0			
2.45	560.00 FD	1.18	339	5.0			
3.26	420.00 FC	1.46	274	5.0			
4.89	280.00 FB	1.98	202	5.0			
7.34	186.76 FA	2.91	137	5.0			
4.72	290.00 FB	0.88	209	4.0	BS 63/40 63B-4	16	36-39
7.08	193.43 FA	1.29	144	4.0			
5.71	240.00 EB	0.89	163	2.7	BS 50/40 63B-4	14	36.39
8.56	160.00 EA	1.27	114	2.7			
6.60	106.00 M	2.35	123	10.0	BS 8880 A .8	51	28.35
7.00	100.00 K	1.40	118	5.0	BS 71 80A-8	21	28.35
8.54	82.00 J	2.15	100	5.0			
11.11	63.001	3.71	83	5.0			
6.73	104.00 K	0.92	117	4.0	BS 63 80A. 8	18	28.35
9.59	73.00 J	1.94	92	4.0			
8.85	104.00 K	1.19	88	4.0	BS 63 71A. 6	14	28-35
12.60	73.00 J	2.50	69	4.0			
16.14	57.00 I	3.30	58	4.0			
8.75	80.00 J	0.80	96	2.7	BS 50 80A-8	16	28.35
10.94	64.00 I	1.28	80	2.7			
12.96	54.00 H	1.67	72	2.7			
11.50	80.00 J	1.10	68	2.7	BS 50 71A 6	12	28-35
14.38	64.00 ।	1.72	58	2.7			
17.04	54.00 H	2.12	51	2.7			
21.90	42.00 G	2.53	43	2.7			
24.86	37.00 Fx	2.76	38	2.7			
11.67	60.001	0.78	72	2.0	BS $4080 \mathrm{~A}-8$	14	28.35
15.33	60.001	0.99	54	2.0	BS 40 71A. 6	10	28.35
19.17	48.00 H	1.37	48	2.0			
16.31	84.00 K	0.81	41	2.0	BS 40 63B-4	9	28-35
19.57	70.00 J	1.19	37	2.0			
22.83	60.00 I	1.62	32	2.0			
28.54	48.00 H	2.09	28	2.0			
34.25	40.00 G	2.44	24	2.0			
45.67	30.00 F	3.01	20	2.0			
57.08	24.00 E	3.56	16	2.0			
68.50	20.00 D	4.12	14	2.0			
91.33	15.00 C	5.31	11	2.0			
137.00	10.00 B	7.48	8	2.0			

Output speed n_{2} rpm	Ratio i	Service factor $f_{b p}$	Output torque T2. Nm	Permissible overhung load Fr2 kN	Size	Weight kg	Dim. page
205.40	6.67 A	9.84	5	1.7	BS 40 63B.4	9	28-35
184.00	15.00 C	31.13	1	1.9	BS 40 63K-2	9	28.35
276.00	10.00 B	44.16	1	1.6			
413.79	6.67 A	56.96	1	1.3			
26	25 D	. 87	40	2.0	BS $3571 \mathrm{C}-8$	9.5	26-27
33	20 C	. 98	35	2.0			
44	15 B	1.25	28	2.0			
66	10 A	1.79	20	2.0			
30	30 E	. 92	34	2.0	BS 3571 A .6	7.5	26-27
37	25 D	1.07	29	2.0			
46	20 C	1.27	24	2.0			
61	15 B	1.59	19	2.0			
92	10 A	2.25	14	1.9			
27	50 G	. 97	27	2.0	BS 35 63B-4	6.5	26.27
34	40 F	1.13	23	2.0			
45	30 E	1.36	19	2.0			
54	25 D	1.59	16	2.0			
68	20 C	1.92	14	2.0			
91	15 B	2.41	11	2.0			
137	10 A	3.45	8	1.7			

Worm geared motors
0.25 kW

Output speed n_{2} rpm	Ratio i	Service factor $f_{b p}$	Output torque T2 Nm	Permissible overhung load Fr2 kN	Size	Weight kg	Dim. page
0.48	2912.00 FK	0.93	1433	15.0	BS 112/63 71 A-4	71	36.39
0.68	2044.00 FJ	1.19	1178	15.0			
0.88	1596.00 Fl	1.40	1000	15.0			
0.98	1428.00 FH	1.49	942	15.0			
1.16	1204.00 FG	1.64	853	15.0			
1.35	1036.00 FFx	1.91	733	15.0			
1.72	812.00 fF	2.18	641	15.0			
2.04	686.00 FE	2.43	575	15.0			
2.78	504.00 FD	3.14	445	15.0			
3.57	392.00 FC	3.72	377	15.0			
0.75	1856.00 Fl	0.82	976	10.0	BS 88/50 71A.4	52	36-39
0.89	1566.00 FH	0.91	876	10.0			
1.15	1218.00 FG	1.05	763	10.0			
1.30	1073.00 FFx	1.13	707	10.0			
1.51	928.00 FF	1.24	643	10.0			
2.01	696.00 FE	1.55	516	10.0			
2.30	609.00 FD	1.66	481	10.0			
3.45	406.00 FC	2.22	360	10.0			
4.60	304.50 FB	2.77	289	10.0			
6.03	232.00 FA	3.48	230	10.0			
2.08	672.00 FE	0.77	522	5.0	BS 71/40 71A.4	20	36-39
2.50	560.00 FD	0.86	463	5.0			
3.33	420.00 FC	1.07	374	5.0			
5.00	280.00 FB	1.45	276	5.0			
7.50	186.76 FA	2.11	190	5.0			
7.24	193.43 FA	0.94	198	4.0	BS 63/40 71A.4	17	36-39
8.75	160.08 EA	0.92	156	2.7	BS 50/40 $71 \mathrm{~A}-4$	15	36-39
8.85	104.00 K	0.79	132	4.0	BS $6371 \mathrm{~B}-6$	15	28-35

Worm geared motors

Output speed n_{2} rpm	Ratio i	Service factor $f_{b p}$	Output torque T2 Nm	Permissible overhung load Fr2 kN	Size	Weight kg	Dim. page
12.60	73.00 J	1.67	104	4.0	BS 6371 B-6	15	28-35
16.14	57.00 1	2.21	87	4.0			
18.04	51.00 H	2.29	80	4.0			
21.40	43.00 G	2.32	72	4.0			
13.46	104.00 K	1.30	77	40	BS 63 71A-4	14	28.35
19.18	73.00 J	2.69	60	4.0			
24.56	57.001	3.18	50	4.0			
27.45	51.00 H	3.46	46	4.0			
14.38	64.001	1.15	87	2.7	$B S 5071 \mathrm{~B} 6$	13	28.35
17.04	54.00 H	1.42	77	2.7			
17.50	80.00 J	1.07	66	2.7	BS $5071 \mathrm{~A} \cdot 4$	12	28-35
21.88	64.00 I	1.70	55	2.7			
25.93	54.00 H	1.86	48	2.7			
33.33	42.00 G	2.23	40	2.7			
37.84	37.00 Fx	2.45	36	2.7			
43.75	32.00 F	2.75	33	2.7			
19.17	48.00 H	0.94	70	2.0	BS 4071 B 6	11	28.35
23.00	40.00 G	1.12	67	2.0			
20.00	70.00 」	0.77	57	2.0	BS 4071 A .4	10	28.35
23.33	60.00 I	1.04	50	2.0			
29.17	48.00 H	1.35	43	2.0			
35.00	40.00 G	1.57	37	2.0			
46.67	30.00 F	1.94	30	2.0			
58.33	24.00 E	2.30	25	2.0			
70.00	20.00 D	2.66	22	2.0			
93.33	15.00 C	3.43	17	2.0			
140.00	10.00 B	4.83	12	2.0			
209.90	6.67 A	6.35	8	1.7			
183.33	15.00 C	9.36	5	1.9	BS 40 63B-2	9	28-35
275.00	10.00 B	13.28	3	1.6			
412.29	6.67 A	17.13	2	1.3			
46.00	20.00 C	. 87	35	2.0	BS $3571 \mathrm{~B} \cdot 6$	8.5	26.27
61.00	15.00 B	1.09	29	2.0			
92.00	10.00 A	1.54	20	1.9			
46.00	30.00 E	. 88	30	2.0	BS 35 71A-4	7.5	26.27
56.00	25.00 D	1.03	25	2.0			
70.00	20.00 C	1.24	21	2.0			
93.00	15.00 B	1.55	17	2.0			
140.00	10.00 A	2.23	12	1.7			
275.00	10.00 A	5.93	3	1.3	BS 35 63.B2	6.5	26.27

Worm geared motors
0.37 kW

Output speed n_{2} rpm	Ratio	Service factor $f_{b p}$	Output torque T2 Nm	Permissible overhung load Fr2 kN	Size	Weight kg	Dim. page
0.68	2044.00 FJ	0.80	1747	15.0	BS 112/63 718.4	72	36.39
0.88	1596.00 Fl	0.94	1483	15.0			
0.98	1428.00 FH	1.00	1398	15.0			
1.16	1204.00 FG	1.10	1267	15.0			
1.35	1036.00 FFx	1.29	1089	15.0			
1.72	812.00 FF	1.47	954	15.0			
2.04	686.00 FE	1.64	856	15.0			
2.78	504.00 FD	2.11	664	15.0			

Output speed n_{2} rpm	Ratio i	Service factor $f_{b p}$	Output torque T_{2} Nm	Permissible overhung load Fr2. kN	Size	Weight kg	Dim. page
2.78	504.00 FD	2.11	664	15.0	BS 112/63 71B.4	72	36-39
3.57	392.00 FC	2.49	563	15.0			
4.55	308.00 FB	3.08	455	15.0			
1.30	1073.00 FFx	0.76	1050	10.0	BS 88/50 71B-4	53	36-39
1.51	928.00 FF	0.84	954	10.0			
2.01	696.00 FE	1.04	766	10.0			
2.30	609.00 FD	1.12	716	10.0			
3.45	406.00 FC	1.49	536	10.0			
4.60	304.50 FB	1.86	431	10.0			
6.03	232.00 FA	2.33	344	10.0			
5.00	280.00 FB	0.97	411	5.0	BS 71/4071B-4	21	36.39
7.50	186.76 FA	1.41	284	5.0			
6.48	108.00 M	1.92	294	15.0	BS $112905-8$	71	28.35
7.37	95.00 L	2.53	271	15.0			
6.60	106.00 M	1.00	288	10.0	BS 8890 S 8	54	28-35
8.54	82.00 L	1.74	241	10.0			
9.86	71.00 K	2.38	212	10.0			
8.68	106.00 M	1.30	216	10.0	BS 88 80A-6	50	28-35
11.22	82.00 L	2.27	180	10.0			
12.96	71.00 K	3.15	156	10.0			
8.54	82.00 J	0.95	228	5.0	BS $71905-8$	24	28-35
9.20	100.00 K	0.78	207	5.0	BS 71 80A-6	20	28.35
11.22	82.00 J	1.22	172	5.0			
14.60	63.00 I	1.97	143	5.0			
19.17	48.00 H	2.37	118	5.0			
9.59	73.00 J	0.85	210	4.0	BS 63 90S-8	21	28.35
12.60	73.00 J	1.07	163	4.0	BS 63 80A-6	17	28.35
16.14	57.00 I	1.41	137	4.0			
18.04	51.00 H	1.46	126	4.0			
13.46	104.00 K	0.77	130	4.0	BS $6371 \mathrm{~B}-4$	15	28.35
19.18	73.00 J	1.60	101	4.0			
24.56	57.00 I	1.88	85	4.0			
27.45	51.00 H	2.05	78	4.0			
32.56	43.00 G	2.34	68	4.0			
37.84	37.00 Fx	2.56	57	4.0			
48.28	29.00 F	3.18	49	4.0			
12.96	54.00 H	0.76	159	2.7	BS 50905.8	19	28.35
17.04	54.00 H	0.90	121	2.7	BS 50 80A6	15	28.35
21.88	64.00 I	1.04	89	2.7	BS $5071 \mathrm{~B}-4$	13	28-35
25.93	54.00 H	1.14	79	2.7			
33.33	42.00 G	1.37	66	2.7			
37.84	37.00 Fx	1.50	59	2.7			
43.75	32.00 F	1.68	53	2.7			
58.33	24.00 E	2.07	41	2.7			
66.67	21.00 D	2.33	37	2.7			
100.00	14.00 C	3.34	26	2.7			
29.17	48.00 H	0.83	70	2.0	BS $4071 \mathrm{~B}-4$	11	28.35
35.00	40.00 G	0.97	60	2.0			
46.67	30.00 F	1.19	50	2.0			
58.33	24.00 E	1.41	41	2.0			
89.00	10.00 A	. 96	32	1.9	BS $3571 \mathrm{C}-6$	9.5	26-27
93.00	15.00 B	. 95	27	2.0	BS $3571 \mathrm{~B}-4$	8.5	26.27
140.00	10.00 A	1.37	19	1.7			
282.00	10.00 A	2.77	7	1.3	BS 3571 A 2	7.5	26-27

Output speed n_{2} rpm	Ratio i	Service factor ${ }^{f} b p$	Output torque T2 Nm	Permissible overhung load Fr 2 kN	Size	Weight	Dim. page
1.36	1036.00 FFx	0.87	1612	15.0	BS 112/63 80A-4	74	$36-39$
$\ddagger .74$	812.00 FF	0.99	1412	15.0			
2.06	686.00 FE	1.10	1268	15.0			
2.80	504.00 FD	1.42	985	15.0			
3.60	392.00 FC	1.67	836	15.0			
4.58	308.00 FB	2.07	677	15.0			
6.50	217.00 FA	2.73	514	15.0			
2.32	609.00 FD	0.75	1060	10.0	BS 88/50 80A-4	55	$36-39$
3.47	406.00 FC	1.01	795	10.0			
4.63	304.50 FB	1.25	639	10.0			
6.08	232.00 FA	1.57	511	10.0			
7.55	186.76 FA	0.94	424	5.0	BS 71/40 80A.4	23	36.39
6.48	108.00 M	1.22	461	15.0	BS $112901-8$	74	28-35
7.37	95.00 L	1.61	425	15.0			
9.21	76.00 K	2.35	366	15.0			
8.54	82.00 L	1.13	372	10.0	BS 8890 L .8	57	28-35
9.86	71.00 K	1.54	327	10.0			
8.68	106.00 M	0.82	341	10.0	BS 88 80B-6	51	28.35
11.22	82.00 L	1.44	285	10.0			
12.96	71.00 K	2.00	246	10.0			
15.86	58.00 J	2.59	216	10.0			
13.30	106.00 M	1.22	221	10.0	BS 88 80A-4	50	28.35
17.20	82.00 L	2.12	184	10.0			
19.86	71.00 K	2.74	159	10.0			
24.31	58.00 j	3.51	139	10.0			
11.11	63.001	1.07	290	5.0	BS $7190 \mathrm{~L}-8$	27	28-35
11.22	82.00 J	0.78	269	5.0	BS 71 808-6	21	28-35
14.60	63.00 1	1.26	223	5.0			
19.17	48.00 H	1.52	185	5.0			
17.20	82.00 J	1.14	177	5.0	$B S 7180 \mathrm{~A} 4$	20	28.35
22.38	63.00 I	1.60	146	5.0			
29.38	48.00 H	1.97	119	5.0			
38.11	37.00 G	2.47	96	5.0			
50.36	28.00 F	2.97	76	5.0			
67.14	21.00 E	3.87	59	4.6			
16.14	57.001	0.91	212	4.0	BS 63 80B-6	18	28-35
18.04	51.00 H	0.94	195	4.0			
21.40	43.00 G	0.96	173	4.0			
19.32	73.00 J	1.00	162	4.0	BS 63 80A-4	17	28.35
24.74	57.00 1	1.18	136	4.0			
27.65	51.00 H	1.28	125	4.0			
32.79	43.00 G	1.46	109	4.0			
38.11	37.00 Fx	1.60	92	4.0			
48.62	29.00 F	1.99	78	4.0			
57.55	24.50 E	2.33	69	4.0			
78.33	18.00 D	2.92	51	3.9			
33.57	42.00 G	0.87	103	2.7	BS $5080 \mathrm{~A}-4$	15	28.35
38.11	37.00 Fx	0.96	92	2.7			
44.06	32.00 F	1.07	84	2.7			
58.75	24.00 E	1.32	65	2.7			
67.14	21.00 D	1.49	59	2.7			
100.71	14.00 C	2.13	41	2.7			
134.29	10.50 B	2.74	32	2.7			
176.25	8.00 A	3.40	24	2.4			
201.43	14.00 C	3.82	17	2.5	BS $5071 \mathrm{~B}-2$	13	28-35
58.75	24.00 E	0.90	65	2.0	BS $4080 \mathrm{~A}-4$	13	28-35

Output speed n_{2} rpm	Ratio i	Service factor $f_{b p}$	Output torque T2 Nm	Permissible overhung load Fr_{2} kN	Size	Weight kg	Dim. page
70.50	20.00 D	1.04	56	2.0	BS 40 80A-4	13	28.35
94.00	15.00 C	1.34	43	2.0			
141.00	10.00 B	1.89	30	2.0			
211.39	6.67 A	2.48	20	1.7			
188.00	15.00 C	2.40	18	1.9	BS 40 71B-2	11	28.35
282.00	10.00 B	3.41	13	1.6			
422.79	6.67 A	4.40	8	1.3			
138.00	10.00 A	0.85	31	1.7	BS $3571 \mathrm{C}-4$	9.5	26-27
282.00	10.00 A	1.52	12	1.3	BS $3571 \mathrm{~B}-2$	8.5	26-27

Worm geared motors

$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Output } \\ \text { speed } \\ n_{2}\end{array} & \begin{array}{c}\text { Ratio } \\ \text { rpm }\end{array} & \text { i } & \begin{array}{c}\text { Service } \\ \text { factor } \\ f_{\text {bp }}\end{array} & \begin{array}{c}\text { Output } \\ \text { torque } \\ \text { T2 }\end{array} & \begin{array}{c}\text { Permissible } \\ \text { overhung load } \\ \text { Fr2 }\end{array} & & \text { Size } \\ \text { Nm }\end{array}\right]$

Output speed n_{2} rpm	Ratio i		Service factor $f_{b p}$	Output torque T2 Nm	Permissible overhung load Fr2 kN	Size	Weight kg	Dim. page
4.61	308.00		0.76	1853	15.0	BS 112/6390L 4	81	36.39
6.54	217.00		0.99	1411	15.0			
9.08	76.00		0.79	1080	15.0	BS $112112 \mathrm{M}-8$	91	28.35
12.37	76.00	K	1.07	807	15.0	BS 112 1001-6	83	28.35
14.92	63.00		1.44	697	15.0			
13.15	108.00		0.76	692	15.0	BS 112 90L.4	74	28.35
14.95	95.00		1.00	635	15.0			
18.68	76.00		1.55	536	15.0			
22.54	63.00		1.89	462	15.0			
30.87	46.00		2.78	350	15.0			
36.41	39.00		3.19	300	15.0			
16.21	58.00	J	0.90	620	10.0	BS 88 100L-6	65	28-35
20.00	71.00	K	0.90	485	10.0	BS 88 90L-4	57	28-35
24.48	58.00		1.15	424	10.0			
30.21	47.00	H	1.44	352	10.0			
36.41	39.00	G	1.77	296	10.0			
48.97	29.00		2.30	228	9.7			
60.43	23.50		2.44	196	9.0			
72.82	19.50	D	3.01	165	8.2			
90.62	15.67	C	3.56	135	7.4			
50.71	28.00	F	1.00	225	5.0	BS 71901.4	27	28-35
67.62	21.00		1.30	177	4.6			
88.75	16.00	D	1.62	138	4.0			
118.33	12.00	C	2.05	105	3.5			
152.20	9.33		2.62	83	3.0			
189.33	7.50	A	2.97	68	2.7			
238.33	12.00	C	3.25	49	2.9	BS 71 90S-2	24	28.35
57.96	24.50	E	0.78	204	4.0	BS 63 90L-4	24	28-35
78.89	18.00		0.98	152	3.9			
101.43	14.00		1.26	122	3.4			
129.09	11.00		1.54	97	3.0			
183.23	7.75	A	1.94	69	2.6			
158.89	18.00		1.55	71	3.1	BS 63 90S-2	21	28-35
204.29	14.00		2.00	57	2.7			
260.00	11.00		2.46	46	2.4			
369.03	7.75		3.11	32	2.1			
135.24	10.50		0.94	93	2.7	BS $50901-4$	22	28.35
177.50	8.00		1.16	71	2.4			
204.29 272.38	14.00 10.50		1.15 1.48	57 44	2.5 2.2	BS 50 90S.2	19	28.35
357.50			1.83	34	2.2 1.9			

Ouiput speed n_{2} rpm	Ratio i	Service factor $f_{b p}$	Output torque T2 Nm	Permissible overhung load Fr2 kN	Size	Weight kg	Dim. page
14.76	63.00 J	0.96	1048	15.0	BS $112112 \mathrm{M}-6$	91	28-35
18.82	76.00 K	1.04	802	15.0	BS 112100 LA 4	81	28-35
22.70	63.00 J	1.26	691	15.0			
31.09	46.00 H	1.86	524	15.0			
36.67	39.00 G	2.13	450	15.0			
51.07	28.00 F	2.70	331	15.0			
62.17	23.00 E	3.23	288	13.6			
30.43	47.00 H	0.97	523	10.0	BS 88 100LA-4	63	28.35
36.67	39.00 G	1.19	440	10.0			
49.31	29.00 F	1.54	339	9.7			
60.85	23.50 E	1.64	291	9.0			
73.33	19.50 D	2.03	245	8.2			
91.26	15.67 C	2.39	201	7.4			
121.70	11.75 B	3.18	154	6.3			
89.38	16.00 D	1.10	204	4.0	BS 71 100LA-4	32	28.35
119.17	12.00 C	1.39	155	3.5			
153.27	9.33 B	1.77	123	3.0			
190.67	7.50 A	2.01	100	2.7			
239.17	12.00 C	2.13	75	2.9	BS 71901.2	27	28.35
307.61	9.33 B	2.74	60	2.4			
382.67	7.50 A	3.15	48	2.2			
102.14	14.00 C	0.85	181	3.4	BS 63 100LA-4	29	28-35
130.00	11.00 B	1.04	144	3.0			
184.52	7.75 A	1.31	102	2.6			
205.00	14.00 C	1.31	88	2.7	BS $63901-2$	24	28.35
260.91	11.00 B	1.61	70	2.4			
370.32	7.75 A	2.04	50	2.1			
358.75	8.00 A	1.21	51	1.9	BS $5090 \mathrm{~L}-2$	22	28-35
Worm geared motors 3 kW							
22.70	63.00 J	0.91	957	15.0	BS 112 1001B-4	84	28-35
31.09	46.00 H	1.34	726	15.0			
36.67	39.00 G	1.54	623	15.0			
51.07	28.00 F	1.95	458	15.0			
62.17	23.00 E	2.33	398	13.6			
73.33	19.50 D	2.70	338	12.8			
93.46	15.30 C	3.42	274	11.0			
60.85	23.50 E	1.19	402	9.0	BS 88 10018-4	66	28.35
73.33	19.50 D	1.47	337	8.2			
91.26	15.67 C	1.74	277	7.4			
121.70	11.75 B	2.31	212	6.3			
197.24	7.25 A	3.35	134	5.0			
245.96	11.75 B	3.58	103	5.1	BS 88 100L-2	63	28.35
153.27	9.33 B	1.29	170	3.0	BS 71 100LB-4	35	28.35
190.67	7.50 A	1.46	138	2.7			
240.83	12.00 C	1.54	104	2.9	BS $71100 \mathrm{~L}-2$	32	28.35
309.75	9.33 B	1.97	83	2.4			
385.33	7.50 A	2.27	66	2.2			
184.52	7.75 A	0.95	141	2.6	BS $63100 \mathrm{LB}-4$	32	28.35
262.73	11.00 B	1.16	96	2.4	BS 63 100L-2	29	28-35
372.90	7.75 A	1.47	69	2.1			

Worm geared motors
5.5 kW

Output speed n_{2} rpm	Ratio i	Service factor $f_{b p}$	Output torque T2 Nm	Permissible overhung load Fi2 kN	Size	Weight kg	Dim. page
50.89	28.00 F	1.04	858	15.0	BS 112 132S-4	107	28.35
61.96	23.00 E	1.24	746	13.6			
73.08	19.50 D	1.44	633	12.8			
93.14	15.30 C	1.82	513	11.0			
123.91	11.50 B	2.29	390	9.5			
203.57	7.00 A	3.36	240	7.6			
249.13	11.50 B	3.72	190	7.5	BS 112 132SA. 2	109	28-35
121.28	11.75 B	1.24	396	6.3	BS 88 132S-4	90	28-35
196.55	7.25 A	1.80	250	5.0			
243.83	11.75 B	1.87	197	5.1	BS 88 132SA-2	92	28-35
395.17	7.25 A	2.92	123	4.0			

Worm geared motors

Output speed n_{2} rpm	Ratio i	Service factor fop	Output torque T2 Nm	Permissible overhung load Fr 2 kN	Size	Weight kg	Dim. page
73.33	19.50 D	0.88	1041	12.8	BS $112132 \mathrm{MD}-4$	129	28.35
93.46	15.30 C	1.11	844	11.0	BS 112 I32MD-4	129	28.35
124.35	11.50 B	1.39	641	9.5			
204.29	7.00 A	2.04	394	7.6			
256.96	11.50 B	2.30	308	7.5	BS $112132 \mathrm{ME}-2$	132	28.35
422.14	7.00 A	3.20	190	6.2	BS 12 I32me.2	132	28.35
$\begin{aligned} & 251.49 \\ & 407.59 \end{aligned}$	$\begin{array}{r} 11.75 \mathrm{~B} \\ 7.25 \mathrm{~A} \end{array}$	$\begin{aligned} & 1.16 \\ & 1.81 \end{aligned}$	$\begin{aligned} & 317 \\ & 198 \end{aligned}$	5.1	BS 88 132ME-2	115	28.35
				4.0			

Worm geared motors BS35 Shaftmounted

Gear	Motor size	$B A$	$B B$	$B C$	$L E$	$H A$	$H B$	$H H$	L	$L M$	$L B$	$\varnothing P A$	$H F$	A	$H E$	$\varnothing V$
$B S 35$	63	7.5	56	74	82	15.5	87	167	297.5	183	72	90	45	35	118	70
$B S 35$	71	7.5	56	74	82	15.5	87	181	334.5	210	82	90	45	35	118	70

Gear	Motor size	$V A$	\varnothing TA	K	F	E	$\varnothing D 2 H 7$	$G 2$	$F 2$ JS9	$\varnothing D Y 2$	$\varnothing D M$	$\varnothing D M B$	$L M B$
BS 35	63	$M 6 \times 9(4 \times)$	$7.5(12 x)$	14.5	56	85	20	22.8	6	30	120	120	49
BS 35	71	$M 6 \times 9(4 x)$	$7.5(12 x)$	14.5	56	85	20	22.8	6	30	140	150	102

Worm geared motors BS35 Footmounted

Gear	Motor size	$L A$	$L 2$	$B A$	BB	BC	LE	$H A$	$H B$	$H H$	L	$L M$	$L B$	$\varnothing P A$	$H F$	A
BS 35	63	42	36	7.5	56	74	82	15.5	87	167	297.5	183	72	90	45	35
BS 35	71	42	36	7.5	56	74	82	15.5	87	181	334.5	210	82	90	45	35

Gear	Motor size	HE	$ø \mathrm{~V}$	VA	\varnothing TA	K	F	E	øD2 ${ }^{\text {¢ }}$	G2	F2 h9	øDM	øDMB	LMB
BS 35	63	118	70	M6x9 (4x)	7.5 (12x)	14.5	56	85	20	22.5	6	120	120	49
BS 35	71	118	70	M6x9 (4x)	7.5 (12x)	14.5	56	85	20	22.5	6	140	150	102

Worm geared motors BS35 Flangemounted

Gear	Motor size	BC	BH	T	L 2	HE	HH	L	LM	LB	$\varnothing \mathrm{PA}$	A
BS 35	63	74	75	8	36	118	167	297.5	183	72	90	35
BS 35	71	74	75	8	36	118	181	334.5	210	82	90	35

Gear	Motor size	\varnothing VA	$\varnothing M$	$\varnothing P$	$\varnothing \mathrm{Nh} 7$	$\varnothing \mathrm{D} 2 \mathrm{j} 6$	F2 h9	G2	$\varnothing \mathrm{DM}$	$\varnothing \mathrm{DMB}$	LMB
BS 35	63	7.5	100	120	80	20	6	22.5	120	120	49
BS 35	71	7.5	100	120	80	20	6	22.5	140	150	102

Worm geared motors BS35 Foot/flangemounted

Gear	Motor size	$L A$	$L 2$	$8 D$	$B E$	$B C$	$L E$	$B F$	$A A$	H,	L	$L M$	$L B$	$\varnothing P A$	$H F$	A	$H E$
BS 35	63	42	36	100	7	74	82	98	16	150	297.5	183	72	90	45	35	118
BS 35	71	42	36	112	9	74	82	112	20	172	334.5	210	82	90	45	35	118

Gear	Motor size	$\varnothing V$	$V A$	$\varnothing T B$	$A B$	B	C	$\varnothing D 2 j 6$	$G 2$	$F 2 h 9$	$A C$	$\varnothing D M$	$\varnothing D M B$	$L M B$
BS 35	63	70	$M 6 \times 9(4 x)$	$7(4 x)$	120	80	40	20	22.5	6	63	120	120	49
BS 35	71	70	$M 6 \times 9(4 \times)$	$7(4 x)$	136	90	45	20	22.5	6	71	140	150	102

Worm geared motors BS40-112 Shaftmounted

BS 40.71
Mounting position O, hollow shaft
Position of terminal box, see page 11
Shaft tolerance, see page 57

BS	Motor-	Motor dimensionsB14				Gear unit dimensions												
		1	LB	L	LB	A	BC	\varnothing DA	HA	HB	HC	HD	HE	HH	HJ	LA	LC	øR
40	63	355	112	355	112													
	71	388	118	388	118													
	80	420	128	420	128	40	73	58	10	36	140	130				100	40	8.3
	90 S	443	138	443	138													
	901	468	138	468	138													
50	71	421	140	421	140													
	80	453	150	463	160	50	78	68	10	38	155	145				124	52	8.3
	905	476	160	476	160	So	78	68	10	38	15s	145				124	52	8.3
	90 L	501	160	501	160													
63	71	443	151	443	151													
	80	475	161	485	171													
	905	498	171	498	171	63	82	80	10	43	183	173				146	63	10.3
	901	523	171	523	171													
	100	561.5	181.5	561.5	181.5													
71	80	495	177	505	187													
	905	518	187	518	187													
	901	543	187	543	187	71	101.4	92	14	49	209	195				165	68.5	12.3
	100	581.5	197.5	581.5	197.5													
	112	595.5	197.5	595.5	197.5													
88	80 (i>55)	577	213	587	223													
	90 S	600	223	600	223													
	901	625	223	625	223	88							275	203	115			
	100	664	233.5	664	233.5													
	112	678	233.5	678	233.5													
	132 (i<55)			779	266													
112	$905(i>60)$	642	244	642	244													
	$901(i>60)$	667	244	667	244													
	100 (i>60)	705	254.5	705	254.5													
	100	718	267	718	267	112							340	252	140			
	112 (i>60)	720	254.5	720	254.5													
	112	732	267	732	267													
	132			821	287													
	160			956	317													

Mounting position O , hollow shaft

Position of terminal box, see page 11
Shaft tolerance, see page 57

Worm geared motors BS40-1 12
 Footmounted

BS 40.71
Mounting position OV, OH, OD
Position of terminal box, see page 11
Shalt tolerance, see page 57

BS	Motor- size	B14 B5 Motor dimensions			LB	Gear unit dimensions											
		L	LB	L		B	HE	HH	HJ	BA	BB	E	F	G	K	T	TA
40	63	355	112	355	112												
	71	388	118	388	118												
	80	420	128	420	128	47	152	106	66	133	108	140	80	20	30	5	8.5
	90 S	443	138	443	138												
	90 L	468	138	468	138												
50	71	421	140	421	140												
	80	453	150	463	160	50	167	119	69	138	113	155	104	36.5	25.5	5	8.5
	905	476	160	476	160												
	90 L	501	160	501	160												
63	71	443	151	443	151												
	80	475	161	485	171												
	90 S	498	171	498	171	52	195	142	79	146	121	183	126	44.5	28.5	7	10.5
	90 L	523	171	523	171												
	100	561.5	181.5	561.5	181.5												
71	80	495	177	505	187												
	905	518	187	518	187												
	901	543	187	543	187	62.5	216.5	153.5	82.5	170	144	209	137	46.5	36	8	12.5
	100	581.5	197.5	581.5	197.5												
	112	595.5	197.5	595.5	197.5												
88	80 (i>55)	577	213	587	223												
	90 S	600	223	600	223												
	90 L	625	223	625	223	70	275	203	115	170	140	140	200	70	30	20	14
	100	664	233.5	664	233.5												
	112	678	233.5	678	233.5												
	132 (i<55)			779	266												
112	90 S (i>60)	642	244	642	244												
	$901(i>60)$	667	244	667	244												
	100 (i>60)	705	254.5	705	254.5												
	100	718	267	718	267	82	340	252	140	210	175	175	250	87.5	37.5	23	18
	112 (i>60)	720	254.5	720	254.5												
	112	732	267	732	267												
	132			821	287												
	160			956	317												

Mounting position OV, OH, OD
Position of terminal box, see page 11
Shaft tolerance, see page 57

8S 40-71
Mounting position UV, UH, UD
Position of terminal box, see page 11
Shaft tolerance, see page 57

BS	Motorsize	Motor dimensions B14				Gear unit dimensions											
		L	LB	L	LB	B	HE	HF	HG	BA	BB	E	F	G	K	T	TA
40	63	355	112	355	112												
	71	388	117	388	118												
	80	420	128	420	128	47	152	98	58	133	108	140	80	20	30	5	8.5
	905	443	138	443	138												
	90 L	468	138	468	138												
50	71	421	140	421	140												
	80	453	150	463	160	50	167										
	90 S	476	160	476	160		167	110	60	138	113	155	104	36.5	25.5	5	8.5
	90 L	501	160	501	160												
63	71	443	151	443	151												
	80	475	161	485	171												
	90 S	498	171	498	171	52	195	128	65	146	121	183	126	44.5	28.5	7	10.5
	90 L	523	171	523	171												
	100	561.5	181.5	561.5	181.5												
71	80	495	177	505	187												
	90 S	518	187	518	187												
	901	543	187	543	187	62.5	216.5	141.5	70.5	169.4	143.4	209	137	46.5	36	8	12.5
	100	581.5	197.5	581.5	197.5												
	112	595.5	197.5	595.5	197.5												
88	80 (i>55)	577	213	587	223												
	90 s .	600	223	600	223												
	901	625	223	625	223	70	275	160	72	170	140	140	200	70	30	20	14
	100	664	233.5	664	233.5												
	112	678	233.5	678	233.5												
	132 (i<55)			779	266												
112	$90 \mathrm{~S} \mathrm{(i>60)}$	642	244	642	244												
	90 L (i>60)	667	244	667	244												
	100 (i>60)	705	254.5	705	254.5												
	100	718	267	718	267	82	340	200	88	210	175	175	250	87.5	37.5	23	18
	112 (i>60)	720	254.5	720	254.5												
	112	732	267	732	267												
	132			821	287												
	160			956	317												

BS 88-112
Mounting position UV, UH, UD
Position of terminal box, see page 11
Shaft tolerance, see page 57

BS 40-71
Mounting position OH
Position of terminal box, see page 11
Shaft tolerance, see page 57

BS	Motorsize	Motor dimensions$\text { Bl } 4$				Gear unit dimensions									
		L	LB	L	LB	A	HS	BJ	M	N	P	\varnothing SA	TE	TD	BH
40	63	355	112	355	112										
	71	388	117	388	118				100	80	118				
	80	420	128	420	128	40	46	28	1151	9511	14017	9	10	3	91.5
	90 S	443	138	443	138				130	110	160				
	90 L	463	138	468	138				165	130	200				
50	71	421	140	421	140	50	48	28	100	80	118				
	80	453	150	463	160				115	95	140	9	10	3.5	99
	90 S	476	160	476	160				13011	1101	1601)	9	10	3.5	99
	90 L	501	160	501	160				165	130	200				
63	71	443	151	443	151	63	53	35	$\begin{aligned} & 130 \\ & 16511 \end{aligned}$	$\begin{aligned} & 110 \\ & 1301 \end{aligned}$	$\begin{aligned} & 160 \\ & 20011 \end{aligned}$	11	12	3.5	106
	80	475	161	485	171										
	905	498	171	498	171										
	90 L	523	171	523	171										
	100	561.5	181.5	561.5	181.5										
71	80	495	177	505	187	71	63	32	165	130	200	11	12	3.5	122.4
	90 S	518	187	518	187										
	90 L	543	187	543	187										
	100	581.5	197.5	581.5	197.5										
	112	595.5	197.5	595.5	197.5										
88	80 (i>55)	577	213	587	223	88	72	24	215	180	250	14	15	4	105
	90 S	600	223	600	223										
	901	625	223	625	223										
	100	664	233.5	664	233.5										
	112	678	233.5	678	233.5										
	132 (i<55)			779	266										
112	$90 \mathrm{~S} \mathrm{(i>60)}$	642	244	642	244	112	88	32	265	230	300	14	15	4	125
	901 (i>60)	667	244	667	244										
	100 (i>60)	705	254.5	705	254.5										
	100	718	267	718	267										
	112 (i>60)	720	254.5	720	254.5										
	112	732	267	732	267										
	132			821	287										
	160			956	317										

[^0]

BS 88-112
Mounting position OH
Position of terminal box, see page 11
Shaft tolerance, see page 57

BS 50/40-71/40
Mounting position O, U •P7
Mountingsposition O-P7
Position of terminal box, see page 11
Shaft tolerance, see page 57

BS	Motorsize	L	Motor dimensions Bl 4			B5		Gear unit dimensions					HC	HD	HE	HH		LA	1 C	LN	R
			LK	LB	L	LK	LB		BC	DA	HA	HB									
50/40	63	355	280	112	355	280	112														
	71	387	295	118	388	295	118	50	78	68	10	38	155	145				124	52	124	8.3
	80	420	307	128	420	307	128														
63/40	63	355	302	112	355	302	112														
	71	387	317	118	388	317	118	63	82	80	10	43	183	173				146	63	135	8.3
	80	420	329	128	420	329	128														
71/40	63	355	310	112	355	310	112														
	71	387	325	118	388	325	118	71	101.4	92	14	49	209	195				165	68.5	139	10.3
	80	420	337	128	420	337	128														
88/50	71	435	412	140	435	412	140														
	80	467	424	150	477	424	160														
	90 S	490	433	160	490	433	160	88							275	203	115			180	12.3
	90 L	515	433	160	515	433	160														
112/63	71	466	453	151	466	453	151														
	80	498	465	161	508	465	171														
	90 S	521	474	171	521	474	171	112							340	252	140			200	
	90 L	546	474	171	546	474	171														
	100	585	494	181.5	585	494	181.5														

Position of terminal box, see page 11
Shaft tolerance, see page 57

BA	BB	E	F	G	K	T	TA	Shaftdimensions		Motordimensions		LM	LU	PA
								D2	L2	DM	HM			
138	113	155	104	36.5	25.5	4	8.5	25	42	120	95	183	85	90
										140	110	210	100	105
										158	122	232	112	120
146	121	183	126	44.5	28.5	5	11	30	58	120	108	183	85	90
										140	123	210	100	105
										158	135	232	112	120
170	144	209	137	46.5	36	6	12.5	35	58	120	116	183	85	90
										140	131	210	100	105
										158	143	232	112	120
170	140	200	140	70	30	20	14	45	82	140	138	210	100	105
											150	232	112	120
										178	159	245	121	140
										178	159	270	121	140
210	175	250	175	87.5	37.5	23	18	55	82	140	149	210	100	105
										158	161	232	112	120
										178	170	245	121	140
										178	170	270	121	140
										198	190	298	141	160

Worm geared motors BS50/40-BS $112 / 63$ Footmounted

BS 50/40-71/40
Mounting position OV - P7
Mounting position OV, OH, OO - P7
Position of terminal box, see page 11
Shaft tolerance, see page 57

BS	Motor size	Motor dimensions B14				B5		Gear unit dimensions			HH	HJ	LN
		L	$\begin{aligned} & \text { B14 } \\ & \text { LK } \end{aligned}$	LB	L			A	B	HE			
50/40	63	387	280	112	387	280	112						
	71	420	295	118	420	295	118	50	50	167	119	69	124
	80	452	307	128	452	307	128						
63/40	63	405	302	112	405	302	112						
	71	438	317	118	438	317	118	63	52	195	142	79	135
	80	470	329	128	470	329	128						
71/40	63	415.5	310	112	415.5	310	112						
	71	448.5	325	118	448.5	325	118	71	62.5	216.5	153.5	82.5	139
	80	480.5	337	128	480.5	337	128						
88/50	71	502	412	140	502	412	140						
	80	536	424	150	536	424	160	88	70	275	203	115	180
	90 S	557	433	160	557	433	160	88	70	275	203	,	180
	90 L	582	433	160	582	433	160						
112/63	71	525	453	151	525	453	151						
	80	557	465	161	557	465	171	112	82	340	252	140	200
	90 S	580	474	171	580	474	171	112	82	340	252	140	200
	90 L	605	474	171	605	474	171						
	100	643.5	494	181.5	643.5	494	181.5						

Mounting position 0,O-P7
Position of terminal box, see page 11
Shaft tolerance, see page 57

BA	BB	BG	E	F	G	K	T	TA	Shaft dimensions			Motordimensions				
									D2	LE	DL	DM	HM	LM	LU	PA
												120	95	183	85	90
									25	98		140	110	210	100	105
												158	122	232	112	120
												120	108	183	85	90
									30	101		140	123	210	100	105
												158	135	232	112	120
												120	116	183	85	90
									35	122		140	131	210	100	105
												158	143	232	112	120
170												140	138	210	100	105
											45	158	150	232	112	120
	140	8	200	140	70	30	20	14	45	154	4	178	159	245	121	140
												178	159	270	121	140
210												140	149	210	100	105
												158	161	232	112	120
	175	18	250	175	87.5	37.5	23	18	55	174	50	178	170	245	121	140
												178	170	270	121	140
												198	190	298	141	160

BS 35 Power ratings

Ratio and code	Input speed n_{1} rpm	Output speed n_{2} rpm	Input power P_{1} kW	Output torque T2 Nm	Efficiency$\begin{aligned} & \eta \\ & \% \end{aligned}$	Thermal rating 1)		Overhung load$\begin{aligned} & F_{r 2} \\ & N \end{aligned}$
						Shaftmount kW	Footmount kW	
10 A	2860	286	. 80	19	71	47	. 63	1300
	1430	143	. 49	26	79	47	. 60	1700
	930	93	. 37	31	81	. 37	. 50	1900
	700	70	. 31	35	81	. 33	. 42	2000
15 B	2860	191	. 58	19	65	. 36	. 47	1600
	1430	95	. 35	26	74	. 34	. 44	2000
	930	62	. 27	31	74	. 28	. 36	2000
	700	47	. 22	35	76	. 24	. 31	2000
20 C	2860	143	. 51	19	55	. 25	. 34	1800
	1430	72	. 30	26	64	. 26	. 33	2000
	930	46	. 22	31	67	. 21	. 27	2000
	700	35	. 18	34	69	. 18	. 24	2000
25 D	2860	114	. 46	19	49	. 22	. 29	1900
	1430	57	. 26	26	60	. 22	. 28	2000
	930	37	. 19	31	62	. 18	. 24	2000
	700	28	. 16	35	64	. 16	. 20	2000
30 E	2860	95	. 38	19	49	. 21	. 29	2000
	1430	48	. 22	26	60	. 21	. 26	2000
	930	31	. 17	31	59	. 17	. 22	2000
	700	23	. 14	36	61	. 15	.19	2000
40 F			. 37		38	. 16	. 23	2000
	1430	36	. 20	26	48	. 16	. 20	2000
	930	23	. 15	31	51	. 13	. 17	2000
					53	. 12	. 15	2000
50 G						. 15	. 20	2000
	1430	29	. 18	26	42	. 14	. 18	2000
	930	19	. 13	31	45	. 12	. 15	2000
	700	14	. 11	35	48	. 10	. 13	2000

1) Gearbox with fan or motor motor with fan,
flange mounted on the gearbox.

BS 40 Power ratings

Ratio and code	Input speed n_{1} rpm	Output speed n_{2} rpm	Input power P_{1} kW	Output torque T2 Nm	Efficiency$\begin{aligned} & 11 \\ & \% \end{aligned}$	Thermal rating 1)		Overhung load $\mathrm{F}_{\mathrm{r} 2}$ N
						Shaftmount kW	Footmount kW	
$\begin{gathered} 6.67 \\ (20 / 3) \\ \mathrm{A} \end{gathered}$	2860	429	1.9	37	85	. 89	1.2	1300
	1430	214	1.3	50	86	1.1	1.3	1700
	930	139	. 99	59	87	. 84	1.0	1900
	730	109	. 87	66	86	. 73	. 92	2000
$\begin{gathered} 10 \\ (20 / 2) \\ B \end{gathered}$	2860	286	1.5	43	83	. 86	1.1	1600
	1430	143	1.0	57	85	1.0	1.2	2000
	930	93	. 78	69	85	. 79	. 99	2000
	730	73	. 68	76	85	. 69	. 86	2000
$\begin{gathered} 15 \\ (30 / 2) \\ \mathrm{C} \end{gathered}$	2860	191	1.1	44	78	. 65	. 87	1900
	1430	95	. 73	58	79	. 75	. 92	2000
	930	62	. 56	70	80	. 58	. 73	2000
	730	49	. 50	77	79	. 51	. 64	2000
$\begin{gathered} 20 \\ (20 / 1) \\ D \end{gathered}$	2860	143	. 91	44	72	. 53	. 70	2000
	1430	72	. 58	58	75	. 60	. 73	2000
	930	46	. 45	70	75	. 47	. 58	2000
	730	36	. 40	78	74	. 41	. 52	2000
$\begin{gathered} 24 \\ (24 / 1) \end{gathered}$	2860	119	. 80	44	69	. 47	. 62	2000
	1430	60	. 51	58	71	. 53	. 65	2000
	930	39	. 39	70	72	. 41	. 51	2000
	730	30	. 35	78	71	. 36	. 45	2000
$\begin{gathered} 30 \\ (30 / 1) \\ \mathrm{F} \end{gathered}$	2860	95	. 69	44	64	. 41	. 53	2000
	1430	48	. 44	59	67	. 45	. 54	2000
	930	31	. 34	70	67	. 35	. 44	2000
	730	24	. 30	78	66	. 31	. 39	2000
$\begin{gathered} 40 \\ (40 / 1) \\ G \end{gathered}$	2860	72	. 57	43	56	. 34	. 44	2000
	1430	36	. 37	58	59	. 36	. 44	2000
	930	23	. 28	69	60	. 28	. 35	2000
	730	18	. 25	76	58	. 25	. 31	2000
$\begin{gathered} 48 \\ (48 / 1) \\ H \end{gathered}$	2860	60	. 52	44	52	. 32	. 41	2000
	1430	30	. 32	58	56	. 33	. 40	2000
	930	19	. 24	66	56	. 26	. 33	2000
	730	15	. 21	71	55	. 23	. 29	2000
$\begin{gathered} 60 \\ (60 / 1) \end{gathered}$	2860	48	. 45	42	46	. 29	. 37	2000
	1430	24	. 26	52	49	. 29	. 35	2000
	930	16	. 18	54	49	. 23	. 29	2000
	730	12	. 15	56	47	. 21	. 26	2000
$\begin{gathered} 70 \\ (70 / 1) \\ j \end{gathered}$	2860	41	. 39	40	43	. 29	. 36	2000
	1430	20	. 21	44	44	. 29	. 35	2000
	930	13	. 14	46	46	. 23	. 28	2000
	730	10	. 11	47	44	. 20	. 25	2000
$\begin{gathered} 84 \\ (84 / 1) \\ K \end{gathered}$	2860	34	. 32	31	34	. 27	. 33	2000
	1430	17	. 16	33	36	. 27	. 32	2000
	930	11	. 10	35	38	. 21	. 26	2000
	730	8.7	. 09	36	37	. 19	. 23	2000

1) Gearbox with fan or motor motor with fan,
flange mounted on the gearbox.

BS 50 Power ratings

Ratio and code i	Input speed n_{1} rpm	Output speed n_{2} rpm	Input power P1 kW	Output torque T_{2} Nm	Efficiencyη\%	Thermal rating 1)		Overhung load $\mathrm{F}_{\mathrm{r} 2}$ N
						Shaft mount kW	Footmount kW	
$\begin{gathered} 8 \\ (24 / 3) \\ A \end{gathered}$	2860	358	2.6	62	88	1.7	2.2	1900
	1430	179	1.7	83	88	1.7	2.1	2400
	930	116	1.4	99	88	1.3	1.6	2700
	730	91	1.2	110	88	1.1	1.4	2700
$\begin{gathered} 10.5 \\ (21 / 2) \\ \text { B } \end{gathered}$	2860	272	2.1	65	86	1.4	1.8	2200
	1430	136	1.4	87	87	1.4	1.7	2700
	930	89	1.1	103	85	1.1	1.4	2700
	730	70	. 97	114	85	. 94	1.2	2700
$\begin{gathered} 14 \\ (28 / 2) \\ C \end{gathered}$	2860	204	1.7	66	82	1.2	1.5	2500
	1430	102	1.1	88	84	1.2	1.5	2700
	930	66	. 88	105	83	. 91	1.1	2700
	730	52	. 77	117	83	. 78	. 97	2700
$\begin{gathered} 21 \\ (21 / 1) \\ D \end{gathered}$	2860	136	1.2	66	76	. 86	1.1	2700
	1430	68	. 80	87	77	. 84	1.0	2700
	930	44	. 63	104	76	. 64	. 80	2700
	730	35	. 56	116	75	. 56	. 69	2700
$\begin{gathered} 24 \\ (24 / 1) \\ \mathrm{E} \end{gathered}$	2860	119	1.1	63	73	. 74	. 93	2700
	1430	60	. 71	85	74	. 72	. 87	2700
	930	39	. 57	102	72	. 55	. 69	2700
	730	30	. 49	112	72	. 48	. 60	2700
$\begin{gathered} 32 \\ (32 / 1) \end{gathered}$	2860	89	. 92	68	69	. 69	. 86	2700
	1430	45	. 59	90	71	. 65	79	2700
	930	29	. 47	108	69	. 50	. 62	2700
	730	23	. 41	120	69	. 43	. 54	2700
$\begin{gathered} 37 \\ (37 / 11) \\ F_{x} \end{gathered}$	2860	77	. 82	66	65	. 59	. 73	2700
	1430	39	. 53	88	66	. 56	. 67	2700
	930	25	. 43	106	64	. 43	. 53	2700
	730	20	. 37	116	64	. 37	. 47	2700
$\begin{gathered} 42 \\ (42 / 1) \\ G \end{gathered}$	2860	68	. 76	68	63	. 57	. 70	2700
	1430	34	. 49	90	65	. 54	. 65	2700
	930	22	. 40	109	63	. 42	. 51	2700
	730	17	. 34	120	63	. 36	. 45	2700
$\begin{gathered} 54 \\ (54 / 1) \\ H \end{gathered}$	2860	53	. 66	68	57	. 49	. 61	2700
	1430	26	. 42	90	59	. 46	. 55	2700
	930	17	. 34	109	57	. 35	. 43	2700
	730	14	. 30	120	57	. 31	. 38	2700
$\begin{gathered} 64 \\ (64 / 1) \end{gathered}$	2860 1430	45	.60 .39	69 93	53 55	. 46	.56 .51	2700 2700
	930	15	. 28	100	53	. 33	. 40	2700
	730	11	. 23	102	53	. 29	. 36	2700
$\begin{gathered} 80 \\ (80 / 1) \end{gathered}$	2860 1430	36 18	.50 .27	66 71	49	.44 .40	.53 .47	2700
	930	12	. 19	75	47	. 31	. 38	2700
	730	9.1	. 15	77	47	. 27	. 34	2700

1) Gearbox with fan or motor motor with fan,
flange mounted on the gearbox.

2) Gearbox with fan or motor motor with fan,
flange mounted on the gearbox.

Ratio and code	Input speed n_{1} rpm	Output speed n_{2} rpm	Input power P_{1} kW	Output forque T2 Nm	Efficiency$\begin{aligned} & \eta \\ & \% \end{aligned}$	Thermal rating 1]		Overhung load $F_{\text {r } 2}$ N
						Shaft- mount kW	Footmount kW	
7.5	2860	381	6.5	151	92	3.2	4.4	2200
(30/4)	1430	191	4.3	201	92	3.6	3.8	2700
A	930	124	3.4	242	91	2.4	2.9	3100
	730	97	3.0	267	91	2.0	2.5	3300
9.33	2860	307	5.7	163	91	3.4	4.2	2400
(28/3)	1430	153	3.8	218	91	3.1	3.7	3000
B	930	100	3.0	260	90	2.3	2.8	3400
	730	78	2.6	288	89	1.9	2.4	3600
12	2860	238	4.5	160	89	2.7	3.3	2900
(36/3)	1430	119	3.0	215	88	2.4	2.9	3500
C	930	78	2.3	255	88	1.8	2.2	4000
	730	61	2.0	282	87	1.5	1.9	4300
16	2860	179	3.6	169	87	2.3	2.8	3300
(32/2)	1430	89	2.4	224	87	2.0	2.5	4000
D	930	58	1.9	269	85	1.5	1.9	4600
	730	46	1.7	297	85	1.3	1.6	5000
21	2860	136	2.9	173	84	2.0	2.4	3700
(42/2)	1430	68	1.9	230	84	1.7	2.0	4600
E	930	44	1.5	276	83	1.3	1.6	5000
	730	35	1.4	305	82	1.1	1.4	5000
28	2860	102	2.2	168	80	1.5	1.8	4200
(28/1)	1430	51	1.5	225	79	1.3	1.5	5000
F	930	33	1.2	267	77	. 97	1.2	5000
	730	26	1.0	298	77	. 83	1.0	5000
37	2860	77	1.9	178	76	1.3	1.6	4700
G	1430	39	1.3	238	76	1.1	1.3	5000
	930	25	1.0	283	74	. 84	1.0	5000
	730	20	. 89	315	73	. 72	. 89	5000
	2860	60	1.5	175	71	1.1	1.3	5000
$(48 / 1)$	1430	30	1.0	234	71	. 93	1.1	5000
H	930	19	. 82	281	69	. 70	. 86	5000
	730	15	. 72	310	68	. 60	. 75	5000
	2860	45	1.3	175	66	. 89	1.1	5000
(63/1)	1430	23	. 85	234	65	. 76	. 91	5000
,	930	15	. 69	281	63	. 58	. 71	5000
	730	12	. 61	310	61	. 51	. 63	5000
82	2860	35	1.1	178	60	. 77	. 92	5000
(82/1)	1430	17	. 62	201	58	. 66	. 79	5000
J	930	11	. 45	211	56	. 50	. 61	5000
	730	8.9	. 37	216	54	. 44	. 54	5000
100	2860	29	. 77	143	56	. 76	. 91	5000
(100/1)	1430	14	. 42	154	54	. 64	77	5000
K	930	9.3	. 30	162	49	. 49	. 60	5000
	730	7.3	. 25	166	43	. 43	. 53	5000

1) Gearbox with fan or motor motor with fan,
flange mounted on the gearbox.

Ratio and code	Input speed n_{1} rpm	Output speed n_{2} rpm	Input power P_{1} kW	Oufput torque T_{2} Nm	Efficiency $\begin{aligned} & \eta \\ & \% \end{aligned}$	Ther Shaft mount kW	ing 1) Footmount kW	Overhung load $\mathrm{F}_{\mathrm{r} 2}$ N
$\begin{gathered} 7.25 \\ (29 / 4) \\ \mathrm{A} \end{gathered}$	2860 1430 930 730	394 197 128 101	15.6 9.9 7.5 6.4	$\begin{aligned} & 358 \\ & 449 \\ & 518 \\ & 560 \end{aligned}$	94 94 93 92	$\begin{aligned} & 9.3 \\ & 6.7 \\ & 4.5 \\ & 3.6 \end{aligned}$	$\begin{gathered} 11.3 \\ 8.4 \\ 5.9 \\ 4.9 \end{gathered}$	$\begin{aligned} & 4000 \\ & 5000 \\ & 5800 \\ & 6300 \end{aligned}$
$\begin{gathered} 11.75 \\ (47 / 4) \\ B \end{gathered}$	2860 1430 930 730	243 122 79 62	10.1 0.8 5.1 4.4	368 490 564 611	93 91 90 90	7.6 5.4 3.6 2.9	9.3 6.8 4.8 4.0	5100 6300 7300 7900
$\begin{gathered} 15.67 \\ (47 / 3) \\ C \end{gathered}$	2860 1430 930 730	183 91 59 47	7.7 5.1 3.9 3.4	364 481 562 610	90 89 88 87	6.1 4.3 2.9 2.3	7.4 5.4 3.8 3.2	6000 7400 8500 9200
$\begin{gathered} 19.5 \\ (39 / 2) \\ D \end{gathered}$	2860 1430 930 730	147 73 48 37	6.6 4.4 3.4 2.9	377 496 578 627	88 87 85 84	4.7 3.3 2.3 1.8	5.7 4.2 3.0 2.5	6600 8200 9400 10000
$\begin{gathered} 23.5 \\ (47 / 2) \\ E \end{gathered}$	2860 1430 930 730	122 61 40 31	5.4 3.6 2.7 2.3	367 479 556 602	86 85 84 83	4.4 3.1 2.1 1.7	5.3 3.9 2.7 2.3	$\begin{array}{r} 7200 \\ 9000 \\ 10000 \\ 10000 \end{array}$
$\begin{gathered} 29 \\ (29 / 1) \\ F \end{gathered}$	2860 1430 930 730	99 49 32 25	5.2 3.3 2.6 2.2	413 524 604 654	82 80 78 77	3.0 2.2 1.5 1.2	3.7 2.7 2.0 1.7	$\begin{array}{r} 8800 \\ 10000 \\ 10000 \\ 10000 \end{array}$
$\begin{gathered} 39 \\ (39 / 1) \\ G \end{gathered}$	2860 1430 930 730	73 37 24 19	3.9 2.6 2.0 1.7	406 525 606 654	79 77 74 73	2.7 1.9 1.3 1.1	3.2 2.4 1.7 1.5	$\begin{array}{r} 9600 \\ 10000 \\ 10000 \\ 10000 \end{array}$
$\begin{gathered} 47 \\ (47 / 1) \\ H \end{gathered}$	2860 1430 930 730	61 30 20 16	3.2 21 1.7 1.4	396 508 585 630	77 75 73 72	2.5 1.8 1.2 .99	3.0 2.2 1.6 1.3	$\begin{aligned} & 10000 \\ & 10000 \\ & 10000 \\ & 10000 \end{aligned}$
$\begin{gathered} 58 \\ (58 / 1) \\ j \end{gathered}$	$\begin{array}{r} 2860 \\ 1430 \\ 930 \\ 730 \end{array}$	49 25 16 13	2.7 1.7 1.3 1.2	383 488 560 602	74 72 69 68	$\begin{gathered} 2.3 \\ 1.7 \\ 1.1 \\ .92 \end{gathered}$	2.8 2.1 1.5 1.2	$\begin{aligned} & 10000 \\ & 10000 \\ & 10000 \\ & 10000 \end{aligned}$
$\begin{gathered} 71 \\ (71 / 1) \\ K \end{gathered}$	$\begin{array}{r} 2860 \\ 1430 \\ 930 \\ 730 \end{array}$	$\begin{aligned} & 40 \\ & 20 \\ & 13 \\ & 10 \end{aligned}$	$\begin{gathered} 2.1 \\ 1.4 \\ 1.1 \\ .86 \end{gathered}$	$\begin{aligned} & 343 \\ & 437 \\ & 492 \\ & 505 \end{aligned}$	$\begin{aligned} & 69 \\ & 67 \\ & 64 \\ & 63 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.4 \\ & .95 \\ & .78 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 1.7 \\ & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10000 \\ & 10000 \\ & 10000 \\ & 10000 \end{aligned}$
$\begin{gathered} 82 \\ (82 / 1) \\ {[} \end{gathered}$	$\begin{array}{r} 2860 \\ 1430 \\ 930 \\ 730 \end{array}$	$\begin{array}{r} 35 \\ 17 \\ 11 \\ 8.9 \end{array}$	$\begin{gathered} 1.8 \\ 1.1 \\ .77 \\ .64 \end{gathered}$	$\begin{aligned} & 341 \\ & 390 \\ & 409 \\ & 420 \end{aligned}$	$\begin{aligned} & 68 \\ & 66 \\ & 62 \\ & 61 \end{aligned}$	1.9 1.4 .94 .77	$\begin{aligned} & 2.3 \\ & 1.7 \\ & 1.2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 10000 \\ & 10000 \\ & 10000 \\ & 10000 \end{aligned}$
$\begin{gathered} 106 \\ (106 / 1) \\ M \end{gathered}$	$\begin{array}{r} 2860 \\ 1430 \\ 930 \\ 730 \end{array}$	$\begin{array}{r} 27 \\ 13 \\ 8.8 \\ 6.9 \end{array}$	$\begin{aligned} & 1.2 \\ & .66 \\ & .47 \\ & .39 \end{aligned}$	$\begin{aligned} & 248 \\ & 269 \\ & 281 \\ & 289 \end{aligned}$	$\begin{aligned} & 59 \\ & 57 \\ & 55 \\ & 54 \end{aligned}$	$\begin{gathered} 1.6 \\ 1.2 \\ .81 \\ .67 \end{gathered}$	$\begin{gathered} 2.0 \\ 1.5 \\ 1.1 \\ .90 \end{gathered}$	$\begin{aligned} & 10000 \\ & 10000 \\ & 10000 \\ & 10000 \end{aligned}$

1) Gearbox with fan or motor motor with fan,
flange mounted on the gearbox.

BS 112 Power ratings

Ratio and code	Input speed n_{1} rpm	Output speed n_{2} rpm	Input power P_{1} kW	Output torque T_{2} Nm	Efficiency$\begin{gathered} \eta \\ \% \end{gathered}$	Thermal rating 1)		Overhung load$\mathrm{F}_{\mathrm{r} 2}$$N$
						Shaftmount kW	Footmount kW	
7	2860	409	27.3	607	95	20.0	24.1	6200
(28/4)	1430	204	18.3	806	94	13.9	17.2	7600
A	930	133	13.8	929	93	9.3	12.2	8900
	730	104	11.7	1006	93	7.4	10.0	9500
11.5	2860	249	19.7	709	93	17.5	21.0	7500
(46/4)	1430	124	12.5	891	93	11.8	14.6	9500
B	930	81	9.4	1026	92	7.8	10.2	10900
	730	63	8.1	1111	91	6.2	8.4	11800
15.3	2860	187	14.9	705	92	14.0	16.8	8900
(46/3)	1430	93	10.0	936	91	9.4	11.6	11000
C	930	61	7.6	1078	90	6.3	8.2	12700
	730	48	6.5	1167	90	5.0	6.7	13800
19.5	2860	147	11.8	691	89	10.6	12.7	10300
(39/2)	1430	73	7.9	912	88	7.2	9.0	12800
D	930	48	6.0	1064	87	4.8	6.3	14800
	730	37	5.2	1155	87	3.8	5.2	15000
23	2860	124	10.3	708	89	10.0	11.9	10900
(46/2)	1430	62	6.8	928	88	6.7	8.3	13600
E	930	40	5.3	1080	86	4.5	5.9	15000
	730	32	4.5	1171	85	3.6	4.8	15000
28	2860	102	8.6	679	84	6.5	7.7	12100
(28/1)	1430	51	5.7	893	83	4.5	5.5	15000
F	930	33	4.5	1041	80	3.1	4.0	15000
	730	26	3.9	1129	79	2.5	3.3	15000
39	2860	73	6.9	741	82	5.9	7.1	13700
(39/1)	1430	37	4.6	960	80	4.1	5.0	15000
G	930	24	3.5	1111	78	2.8	3.6	15000
	730	19	3.0	1200	77	2.2	3.0	15000
46	2860	62	6.1	755	81	5.6	6.7	14600
(46/1)	1430	31	4.0	974	79	3.8	4.7	15000
H	930	20	2.1	1124	77	2.6	3.4	15000
	730	16	1.8	1212	75	2.1	2.8	15000
63	2860	45	4.2	684	77	4.8	5.8	15000
(63/1)	1430	23	2.7	874	75	3.3	4.1	15000
, ${ }^{\text {(6) }}$	930	15	3.1	1003	73	2.2	2.9	15000
	730	12	2.7	1065	71	1.8	2.4	15000
76	2860	38	3.5	654	73	4.4	5.2	15000
(76/1)	1430	19	2.3	831	71	3.0	3.7	15000
K	930	12	1.6	861	69	2.0	2.6	15000
	730	9.6	1.3	858	68	1.6	2.2	15000
	2860	30	2.7	587	69	3.7	4.4	15000
(95/1)	1430	15	1.5	636	66	2.5	3.1	15000
L	930	9.8	1.1	667	63	1.7	2.2	15000
	730	7.7	. 89	684	62	1.4	1.9	15000
$\begin{gathered} 108 \\ (108 / 1) \end{gathered}$	2860 1430	26 13	2.1 1.2	484 524	64 61	3.4 2.3	4.0 2.9	15000 15000
M	930	8.6	. 83	549	59	1.6	1.7	15000
	730	6.8	. 69	563	58	1.3	1.7	15000

1) Gearbox with fan or motor motor with fan,
flange mounted on the gearbox.

2) Gearbox with fan or motor motor with fan,
flange mounted on the gearbox.

Mounting position O , hollow shaft

$B S$	A	$B C$	$D 1$	$D 2$	$D A$	$H A$	$H B$	$H C$	$H D$	L	$L 1$	$L A$	$L B$	$L C$	$L D$	$L E$	$L X$	$M E$	$M F$	$\varnothing R$	$S E$
40	40	73	14	20	58	10	36	140	130	146	25	100	86	40	10	92	8.5	46	46	8.1	$M 8 \times 12$
50	50	78	19	25	68	10	38	155	145	179	35	124	108	52	10	98	8	56.6	56.6	8.3	$M 8 \times 12$
63	63	82	19	30	80	10	43	183	173	200.5	35	146	118.5	63	10	101	7	56.6	56.6	10.3	$M 8 \times 12$
71	71	101.4	24	35	92	14	49	209	195	214	40	165	128	68.5	14	122	7.3	76.4	76.4	12.5	$M 8 \times 14$

Underdriven worm gear with feet and output shaft

Mounting position UV, UH, UD
Mounting position UV

BS	B	BA	BB	D1	D2	E	F	G	$H E$	$H F$	$H G$	K	L	$L 1$	$L 2$	LB	T	TA
40	47	133	108	14	20	140	80	20	152	98	58	30	146	25	36	86	5	8.5
50	50	138	113	19	25	155	104	36.5	167	110	60	25.5	179	35	42	108	5	8.5
63	52	146	121	19	30	183	126	44.5	195	128	65	28.5	200.5	35	58	118.5	7	10.5
71	62.5	169.4	143.4	24	35	209	137	46.5	216.5	141.5	70.5	36	214	40	58	128	8	12.5
9.6																		

Shaft tolerance, see page 57

Overdriven worm gear with feet and output shaft

Mounting position OV, OH, OD
Mounting position OV

$B S$	B	$B A$	$B B$	D1	D2	E	F	G	$H E$	$H H$	$H G$	K	L	$L 1$	$L 2$	$L B$	T	$T A$	$K \mathrm{gs}$
40	47	133	108	14	20	140	80	20	152	106	66	30	146	25	36	86	5	8.5	3.0
50	50	138	113	19	25	155	104	36.5	167	119	69	25.5	179	35	42	108	5	8.5	4.8
63	52	146	121	19	30	183	126	44.5	195	142	79	28.5	200.5	35	58	118.5	7	10.5	6.5
71	62.5	169.4	143.4	24	35	209	137	46.5	216.5	153.5	82.5	36	214	40	58	128	8	12.5	9.6

Worm gear with vertical worm screw, feet and output shaft

Mounting position VV, VH, VD
Mounting position VV

BS	B	BA	BB	D1	D2	E	F	GA	HE	HK	K	L1	L2	LB	T	TA	Kgs
40	47	133	108	14	20	140	80	24	62	148	30	25	36	86	5	8.5	3.9
50	50	138	113	19	25	155	104	31.5	74	182	25.5	35	42	108	5	8.5	6.1
63	52	146	121	19	30	183	126	38.5	85	203.5	28.5	35	58	118.5	7	10.5	8.3
71	62.5	169.4	143.4	24	35	209	137	39	90	218	36	40	58	128	8	12.5	12.0

Shaft tolerance, see page 57

Worm gear with horizontal input shaft and feet

Mounting position HU, HN, HD. Also state position of input shaft \qquad B. Mounting position HU-B

BS	A	B	BD	BE	BF	D1	D2	GB	HI	HN	KA	L	L1	L2	L8	LE	LF	TB	TC	X	Kgs
40	40	47	40	181	162	14	20	57	131.5	48.5	9.5	146	25	36	86	100	80	9	12	49	4.1
50	50	50	40	196	177	19	25	59	143	51	9.5	179	35	42	108	124	104	9	12	52	6.4
63	63	52	45	233	213	19	30	68	163	53	10	200.5	35	58	118.5	146	126	11	12	54	8.7
71	71	62.5	55	266	241	24	35	79	186.5	66	12.5	214	40	58	128	165	137	12.5	15	64.5	12.7

Standard execution with motorflange

Mounting position O - or U-hollow shaft

Size	Motorsize	Flange type		BC	D2	DA	HAH8	HC	HD	L	LA	LB	LC	LD	LE	MA	NA	PA	øR	S		Kgs
40	63	B14	40	73	20	58	1036	140	130	172	100	112	40	10	92	75	60	92	8.3	6 8 3.6 7 9 3.6 7 10 3.6 9 12 3.6		
	71	B14								178		118				85	70	102				
	80	B14								188		128				100	80	118				
	90	B14								198		138				115	95	140				
50	71	$B 14$	50	78	25	68	1038	155	145	211	124	140	52	10	98	85	70	108	8.3	$\begin{array}{lll} 7 & 10 & 5.5 \\ 7 & 10 & 5.7 \\ 9 & 12 & 5.9 \end{array}$		
	80	B14								221		150				100	80	118				
	90	B14								231		160				115	95	140				
63	71	B14	63	82	30	80	1043	183	173	233	146	151	63			85	70	108	10.3	$\begin{array}{ccc} 7 & 10 & 7.2 \\ 7 & 10 & 7.4 \\ 9 & 12 & 7.6 \\ 9 & 12 & 7.8 \end{array}$		
	80	B14								243		161				100	80	118				
	90	B14								253		171				115	95	140				
	100	B14								263.5		181.5				130	110	160				
71	80	B14		104.5	35	92	1449	209	195	$\begin{aligned} & 263 \\ & 273 \\ & 283.5 \end{aligned}$	165	177	68.5	14	122	100	80		12.3	$\begin{array}{llll} 7 & 10 & 10.6 \\ 9 & 12 & 10.8 \\ 9 & 12 & 11.0 \end{array}$		
	90	B14										187				115	95	140				
	100/112	B14										197.5				130	110	160				

Shaft tolerance, see page 57

Underdriven worm gear with feet, output shaft and motorflange

Mounting position UV, UH, UD

Mounting position UV

Overdriven worm gear with feet, output shaft and motorflange

Mounting position OV

Shaft tolerance, see page 57

Worm gear with vertical worm screw, feet, output shaft and motorflange

Mounting position VV, VH, VD

Mounting position VV

Size	Motorsize	Flange type	B		BB	D2	E	F	GA	HR	HL	K L2	LB	MA	NA	PA	S	T	TA	TM	Vikt
40	63	B14	47	133	108	20	140	80	24	174	62	3036	112	75	60	92	6	5	8.5	8	4.5
	71	B14								180			118	85	70	102	7			9	4.5
	80	B14								190			128	100	80	118	7			10	4.5
	90	B14								200			138	1.15	95	140	9			10	4.5
	71	B14	50	138	113	25	155	104	31.5	214	74	25.542	140	85	70	108	7	5	8.5	10	6.8
50	80	B14								224			150	100	80	118	7			10	7.0
	90	B14								234			160	115	95	140	9			12	7.2
63	71	B14	52	146	121	30	183	126	38.5	236	85	28.558	151	85	70	108			10.5	10	9.0
	80	B14								246			161	100	80	118	7	7		10	9.2
	90	B14								256			171	115		140	9			12	9.4
	100	B14								266.5			181.5	130	110	160	9			12	9.6
71	80	B14	62.5169 .4		143.4	35	209	137	39	267	90	3658	177	100		118	7	8	12.5	10	13.0
	90	B14			277					187			115		140	9	12			13.2	
	0/112	B14			287.5					197.5			130	110	160	9	12			13.4	

Motorflange type B5

Size	Motorsize	I.B	MA	NA	PA	S	TM
		63	112	115	95	140	9
BS 40	71	118	130	110	160	9	9
	80	128	165	130	200	11.5	10
	90	138	165	130	200	11.5	10
	71	140	130	110	160	9	10
BS 50	80	160	165	130	200	11.5	12
	90	160	165	130	200	11.5	12
	71	151	130	110	160	9	10
BS 63	80	171	165	130	200	11.5	12
	90	171	165	130	200	11.5	12
	100	181.5	215	180	250	14	12
BS 71	90	187	165	130	200	11.5	12
	90	187	165	130	200	11.5	12
	$100 / 112$	197.5	215	180	250	14	12

BS 88-112 Worm gear with feet and output shaft

Size	FD	FL
BS 88	140	55
BS 112	140	55

Mounting position OV, OH, OD

Mounting position OV

| Size | Ratio | BB | BA | 8 | E | K | F | G | $D 2$ | $D 1$ | $L 2$ | $L 1$ | $H H$ | T | HJ | HE | L | LB | TA | SE | ME | MF | Kgs |
| :--- |
| BS | <55 | 140 | 170 | 70 | 140 | 30 | 200 | 70 | 45 | 28 | 82 | 42 | 203 | 20 | 115 | 275 | 300 | 168 | 14 | $M 10 \times 18$ | 95 | 120 | 40 |
| 88 | >55 | 140 | 170 | 70 | 140 | 30 | 200 | 70 | 45 | 24 | 82 | 42 | 203 | 20 | 115 | 275 | 300 | 168 | 14 | $M 10 \times 18$ | 95 | 120 | 40 |
| BS | <60 | 175 | 210 | 82 | 175 | 37.5 | 250 | 87.5 | 55 | 35 | 82 | 58 | 252 | 23 | 140 | 340 | 355 | 202 | 18 | $M 10 \times 20$ | 95 | 120 | 57 |
| 112 | >60 | 175 | 210 | 82 | 175 | 37.5 | 250 | 87.5 | 55 | 28 | 82 | 42 | 252 | 23 | 140 | 340 | 339 | 186 | 18 | $M 10 \times 20$ | 95 | 120 | 57 |

BS 88-1 12 Worm gear with hollow shaft

Mounting position O-hollow shaft

Mounting position O-hollow shaft

Size	Ratio	BB	BA	BG	D2	D1	DL	E	F	G	HH	HJ	HE K	L	11	LB	LE.	T	TA	SE		M	Kgs
BS	<55	140	170	8	45	28	45	140	200	70	203	115	27530	300	42	168	154	20	14	M10x18	95	120	39
88	>55	140	170	8	45	24	45	140	200	70	203	115	27530	300	42	168	154	20	14	M10x18	95	120	39
BS	<60	175	210	18	55	35	50	175	250	87.5	252	140	34037.5	355	58	202	174	23	18	M10x20	95	120	56
112	>60	175	210	18	55	28	50	175	250	87.5	252	140	34037.5	339	42	186	174	23	18	$\mathrm{MlO} \times 20$	95	120	56

Shaft tolerance, see page 57

Worm gear BS88-1 12 with horizontal input shaft and feet

Mounting position HU, HN, HD. Also state position of input shaft \qquad A or 0 B. Mounting position HU-A

| Size | Ratio | A | B | BD | BF | BE | D1 | D2 | L2 | L1 | FD | FL | GB | HM | HN | L | LB | LF | LE | KA | TB | TC | Kgs | Oil \langle lit $)$ |
| :--- |
| BS | <55 | 88 | 70 | 45 | 335 | 365 | 28 | 45 | 82 | 42 | 140 | 55 | 102 | 252 | 100 | 300 | 168 | 120 | 200 | 15 | 14 | 7 | 40 | 1.5 |
| 88 | >55 | 88 | 70 | 45 | 335 | 365 | 24 | 45 | 82 | 42 | 140 | 55 | 102 | 252 | 100 | 300 | 168 | 120 | 200 | 15 | 14 | 7 | 40 | 1.5 |
| |
| BS | <60 | 11282 | 60 | 420 | 460 | 35 | 55 | 82 | 58 | 140 | 55 | 128 | 289 | 125 | 355 | 202 | 135 | 250 | 20 | 18 | 10 | 57 | 1.6 | |
| 112 | >60 | 11282 | 60 | 420 | 460 | 28 | 55 | 82 | 42 | 140 | 55 | 128 | 289 | 125 | 339 | 186 | 135 | 250 | 20 | 18 | 10 | 57 | 1.6 | |

BS 88-112 Motorflange

Mounting position OH, OV, OD

Mounting position OV

Size	Motor			B14 Flange							B5 Flange							
		size	HH	L.	LB	MA	NA	PA	S	TM	L	LB	MA	NA	PA	S	TM	Vikt
$\begin{aligned} & B S \\ & 88 \end{aligned}$	i>55	80	203	345	213	100	80H7	118	7	10	355	223	165	130 H 7	200	11.5	12	41
		90	203	355	233	115	95H7	140	9	12	355	223	165	130 H 7	200	11.5	12	41
		100/112	203	365	233.5	130	110 H 7	160	9	12	365	233.5	215	180H7	250	14	12	42
	i<55	132	203								398	266	265	230 H 7	300	14	13	50
$\begin{aligned} & \text { BS } \\ & 112 \end{aligned}$	$i>60$	90	252	397	244	115	95H7	140	9	12	397	244	165	130H7	200	11.5	12	58
	$i>60$	100/112	252	408	254.5	130	$110 \mathrm{H7}$	160	9	12	408	254.5	215	180 H 7	250	14	12	59
		100/112	252	420	267	130	110H7	160	9	12	420	267	215	180H7	250	14	12	61
		132	252								440	287	265	230 H 7	300	14	13	67

Shaft tolerance, see page 57

1) Standard execution,
others on request

Size	BH	D2	12	BJ	M	N	P	SA	TE	TD	Vikt
BS 40	91.5	20	36	28	100	$80 \mathrm{h7}$	118	7	10	3	4.1
					$115^{\text { }}$	$95 \mathrm{hl}^{1}$	140^{1}	9			
					130	$110 \mathrm{h7}$	160	9			
					165	130 h 7	200	11			
BS 50	99	25	42	28	100	80 h 7	118	7	10	3.5	6.6
					115	95h7	140	9			
					130^{1}	110h71	160^{1}	9			
					165	130 h 7	200	11			
BS 63	106	30	58	35	130	$110 \mathrm{h7}$	160	9	12	3.5	9.3
					1651	130h71	2001	11			
BS 71	122.4	35	58	32	165	130h7	200	11	12	3.5	13.9
BS 88	105	45	82	24	215	180;6	250	14	15	4	47
BS 112	125	55	82	32	265	23016	300	14	15	4	69

Shaft tolerance, see page 57

Execution with torque arm

Size	$\varnothing \mathrm{B}$	$\varnothing \mathrm{BY}$	$\varnothing \mathrm{H}$	SA	$\varnothing \mathrm{SH}$	$\varnothing \mathrm{SV}$	RL	RS	TS	TB
BS 35	9	20	$7(8 \mathrm{x})$	100	70	55	15	42.5	4	12

Size	AK	AS	AT	BO	$H T$	BL	LN	LS \min / max	S	SB	TF	Kgs
BS 40	-	-	-	9	76	36.5	70	$165 / 245$	-	8	4	4.0
BS 50	-	-	-	9	88	39	85	$165 / 245$	-	8	5	5.8
BS 63	-	-	-	11	106	41	103	$190 / 290$	-	$3 / 8^{\prime \prime}$	5	7.5
BS 71	-	-	-	11	120	50.7	107.5	$190 / 290$	-	$3 / 8^{\prime \prime}$	5	10.7
BS 88	47	18	-	-	190	-		$460 / 600$	16	-	-	40.0
BS 112	60	18	5	-	240	-		$480 / 600$	16	-	-	57

Execution with electromagnetic brake

Size	Brake size	Brake torque Nm	$ø \mathrm{~PB}$	LH	LK	Vikt
BS 40	02	3	85	112	55	4.6
	03	5.7	100	114	60	5.2
	04	12.6	116	120	66	6.3
BS 50	03	6.4	100	131	60	7
	04	14.4	116	137	66	8.1
	05	24	137	146	75	10.4
	03	6.4	100	142	60	8.7
BS 63	04	14.4	116	148	66	9.8
	05	24	137	157	75	12.1
BS 71	04	16	116	159	74	12.3

Shaft bushings

	Hollow shaft mm			
Size	Standard	Bushing		
BS 88	45	40	35	-
BS 112	55	50	45	40

Key and locking screws are supplied with each set of bushes.

Shaftdimensions and tolerances

Size	Input shaft			Hollow shaft				Output shaft		
	D1	F1	GI	DY2	D2	F2	G2	D2	F2	G2
BS 35				30d9	$20 \mathrm{H7}$	6159	22.8	20;6	6h9	22.5
BS 40	$14{ }^{6}$	5h9	16	37d9	$20 \mathrm{H7}$	6159	22.8	20;6	6h9	22.5
BS 50	19;6	6h9	21.5	40d9	25 H 7	8159	28.3	25i6	8h9	28.0
BS 63	1976	6h9	21.5	45d9	30 H 7	8159	33.3	30;6	8h9	330
BS 71	$24 i 6$	8h9	27	50d9	35 H 7	10159	38.3	$35 ; 6$	10h9	38.0
BS 88 i<60	$28 ز 6$	Sh9	31	65d9	45H7	14D10	48.8	45k6	14h9	48.5
BS 88 i>60	24.6	$8 \mathrm{h9}$	27							
BS 112 i<60	35j6	10h9	38	80d9	55 H 7	16010	59.3	55k6	16h9	59.0
BS 112 i>60	28; 6	8h9	31							

Keyway acc. to SMS 2305

Maximum input speed n_{1}

	Size							
	35	40	50	63	71	88	112i<60:1	$112 i>60: 1$
$\mathrm{n}_{1}, \max \mathrm{rpm}$	4500	6000	5500	5000	4500	4000	3000	3500

Worm Gear with environmental classification

With BS (size 40-71) classified acc to only materials in stainless steel are environmental class we are able to accepted. The gears are classified acc recommend the gears for installation in to environ-mental class M2-M3, Swedish ambient conditions where normally standard stBK-N4.

Advantages:

- No corrosion
- Low weight (aluminium)
- High rating
- IEC-standard

Product specification

- coated gear case, flanges and feet
- stainless steel bolts in gear housing
- stainless steel hollow shaft (SS 2346 alt. 2382)
- stainless steel output shaft
- surface for seal ring protected by stainless steel sleeve (SS 2333)
- Seal rings of viton
- ratings acc to catalogue

Type of coating

The coating is a recently developed surface coating method for aluminium.
The coating means that the material surface is, by a chemical process, converted into an aluminium oxide, which gives a very hard, ceramic, surface finish.
The oxide layer is then impregnated and coated with plastic. With heat treatment a very strong and resistant connection between oxide and plastic is created.
Unique coating qualities:

- High surface finish - Modern design
- No maintenance - Easy handling
- Large number of motor alternatives
- high resistance against corrosion
- very hard and resistant against wear
- low tendency to be sticky
- hygienic

Application examples

- food industry
- paper and cellulose industry
- pharmaceutical industry
- chemical industry
- defence industry
- marine and mobile installations
- all outdoor installations

Gear	BS 40	BS 50	BS 63	BS 71
Catalogue rating, $\mathrm{Nm} \quad \begin{gathered}\text { max } \\ \min \end{gathered}$	$\begin{aligned} & 78 \\ & 31 \end{aligned}$	$\begin{array}{r} 120 \\ 62 \end{array}$	$\begin{array}{r} 197 \\ 92 \end{array}$	$\begin{aligned} & 315 \\ & 143 \end{aligned}$
Output speed, rpm $\quad \max _{\min }$	$\begin{array}{r} 429 \\ 9 \end{array}$	$\begin{array}{r} 358 \\ 9 \end{array}$	369 7	$\begin{array}{r} 381 \\ 7 \end{array}$
Max static load, Nm	93	150	250	400
Radial force on output shaft, N	2000	2700	4000	5000
Thrust load on output shaft, N	2000	2500	3500	4500

Applications

Wormed geared motor with encoder flange (PGF)

Benzlers "electronic" catalogue

We at Benzlers has as one of our goals to continuously help our customers to increase their profitability and efficiency. As a step on this road we have made programs for CAD and PC with drawings and calculation programs for our whole range of gears, which will simplify your selection of gears.
This electronic catalogue will help you with;
Selection of gear and geared motor.
Documentation of selection and related power demands etc.
Detail drawing and Layout drawing.
With these programs you will win considerable amount of time in the design stadium and will gain higher development speed in your own business. Except gaining time the selection will secure that the optimal gear combination is selected in each and every case. Thereby the risk for expensive breakdown will decrease to a minimum and also unnecessary high cost if too big gears are selected .

Mounting

General

1. The gear should be placed on a flat and solid foundation.
2. Sprocket, pulley or coupling on shaft can not be mounted with force. This will damage the gear.
3. To avoid increasing load on shafts and bearings, the gear and the driven machine should be carefully aligned, even if an elastic coupling is used.
4. If sprockets are used on the output shaft the preferable direction of pull should be such that the gear housing willbe pressed towards the foundation.
5. When situated outdoors or working under adverse conditions as heat, dust or damp, the gear must be provided with sufficient protection, but the cooling air circulation must not be unduly restricted.

Hollow shaft gears

1. The gear is normally mounted on a shaft with tolerance is6. The hollow shatt have tolerance H 7 .
Grease the shaft with Molykote BR2 or equivalent before the gear is mounted. The gear shall not be mounted with force.
The gear shall be locked against axiel movement. Set screws in hollow shaft can be used for BS88 and 112 .

Lubrication

Before delivery BS4O-112 are filled with synthetic oil . Mobil SHC 634 and BS35 with synthetic grease - Mobil SHC 007. This type of lubrication is extra suitable for worm gears.

At normal condition the oil/grease never needs to be changed.
Ambient temperature $-30^{\circ} \mathrm{C}-+30^{\circ} \mathrm{C}$.

Maintenance

1. Benzler worm gears are lubricated for life with synthetic oil/grease and are therefore maintenance free.
2. The worm gears shall under no circumstances be entirely filled with oil or grease.
3. Check that there are no leakage.

Running in

1.The gear should be run under low load conditions during the first $10-30$ hours. Then the load should gradually be increased to full load.
2.The length of the running-in period depends on the size of the gear and the actual working conditions.
3. When increasing the load the temperature of the gear can exceed the ambient temperature by $60-70^{\circ} \mathrm{C}$. Oiland geartemperatures of $95-100^{\circ} \mathrm{C}$ are harmless and have no influence on the function af the gear. When the temperature exceeds $100^{\circ} \mathrm{C}$ special sealrings must be used.
4. Gears which are not used for a long period should be run for short periods, approximately every third month.

Questionaire

To specify a drive precisely, certain data are essential. The most important questions are listed in the table below. If you do not have the required data available in this form, we advice you to use a technical handbook or other suitable documentation. Should you have any question, please do not hesitate to contact us, Benzlers specialists will be pleased to assist you.

Load designation

Additional information:

BENZLERS

AB Benzlers Box 922, SE-251 09 Helsingborg, SWEDEN

[^0]: ${ }^{1)}$ Standardufförande, övriga på förfrågan.

